MATHEMATICAL ASSOCIATION OF AMERICA

National Evaluation of

Undergraduate

 Mathematics EffortsDavid Bressoud St. Paul, MN

MaCalester College

NSF INCLUDES Multi-Scale Evaluation Conference
Knoxville, TN, February 24, 2017

PDF file of these slides available at www.macalester.edu/~bressoud/talks

Report to the President:
 Engage to Excel Feb., 2012

President's Council of Advisors on Science and Technology (PCAST)
Recommendation 3-1: "This national experiment should fund ... college mathematics teaching and curricula developed and taught by faculty from mathematics-intensive disciplines other than mathematics, including physics, engineering, and computer science."
94% increase from

The Perfect Storm

Today math departments teach greater numbers of students, who are less prepared, using fewer resources, and with increased expectations for student success.

Persistence

Forty-three percent of students who received

 an A in precalculus and who had declared a STEM major that required calculus chose not to take calculus.
ASU Freshman STEM Improvement Committee

Submitted to Executive Vice President \& University Provost Elizabeth Capaldi

Switchers by grade in Calculus I. Women:

$$
\text { A: } 10 \% \quad \text { B: } 13 \% \quad \text { C: } 24 \%
$$

Men

$$
\text { A: } 6 \% \quad \text { B: } 6 \% \quad \text { C: } 12 \%
$$

Women in Engineering:

$$
\text { A or B: } 4 \% \quad \text { C: } 19 \%
$$

Men in Engineering

$$
\text { A or B: } 2 \% \quad \text { C: } 7 \%
$$

Reason for switching	Gender	Students earning A or B	Students earning C
Too many other courses I need to take	Women	43%	33%
Have changed major	Men	42%	16%
	Women	40%	43%
Takes too much time	Women	33%	39%
and effort	Men	23%	25%
Bad experience in Calculus I	Women	18%	26%
Don't understand calculus well enough	Men	19%	33%
Grade was not good enough	Women	18%	38%
	Momen	4%	26%

Students could select more than one response.

RESEARCHARTICLE

Women 1.5 Times More Likely to Leave STEM Pipeline after Calculus Compared to Men: Lack of Mathematical Confidence a Potential Culprit

Jessica Ellis ${ }^{\mathbf{1 *}}$, Bailey K. Fosdick ${ }^{\mathbf{2}}$, Chris Rasmussen ${ }^{\mathbf{3}}$

1 Department of Mathematics, Colorado State University, Fort Collins, Colorado, United States of America,
2 Department of Statistics, Colorado State University, Fort Collins, Colorado, United States of America,
3 Department of Mathematics and Statistics, San Diego State University, San Diego, California, United
States of America

Student

Attitudes toward Mathematics

Structural Equation Model for Math Identity of College Calculus Students

Cribbs, J., Hazari, Z., Sonnert, G., \& Sadler, P. (2015). Establishing an Explanatory Framework for Mathematics Identity, Child Development, 86(4), 1048-1062.

Effect of Calculus I at PhD-granting universities on

Desire to continue the study of mathematics

Enjoyment of doing mathematics

Confidence in mathematical abilities

"Good Teaching" (in order of significance)

My Calculus Instructor:

1. provided explanations that were understandable
2. helped me become a better problem solver
3. allowed time for me to understand difficult ideas
4. made me feel comfortable in asking questions during class
5. presented more than one method for solving problems
6. made class interesting
7. asked questions to determine if I understood what was being discussed

"Ambitious Pedagogy" (in order of significance)

1. Instructor had students work with one another
2. Assignments were submitted as group projects
3. Exam questions included word problems
4. Assignments included word problems
5. Assignments required explanation of thinking
6. Assignments included problems unlike those done in class or in the book
7. Instructor held whole-class discussion

Interaction on student confidence

Departmental Efforts and Culture

Source: Sonnert, G., \& Sadler, P. M. (2014). The impact of taking a college precalculus course on students' college calculus performance. International Journal of Mathematical Education in Science and Technology, 45(8), 1188-1207

Variation	PhD (133)	MA (89)
Stretched out Calculus I	13	7
Calculus infused with precalculus	7	4
Stretched out Calculus I \& II	6	1
Precalc contemporaneous with calculus	2	1

Spring 2015, surveys on the precalculus through single variable calculus sequence sent to all 330 US math departments offering a graduate degree in mathematics.

Response rates:
PhD departments: $134 / 178=75 \%$
MA departments: 89/152 = 59\%
Overall: $223 / 330=68 \%$

Available at MAA.org/PtC

PROGRESS THROUGH CALCULUS:

CENSUS SURVEY TECHNICAL REPORT

Bressoud, Mesa, \& Rasmussen (eds.). 2015. Insights and Recommendations from the MAA National Study of College Calculus.

MAAPRESS
 Chapters describing best practices in

- Placement
- Student support
- Pedagogy

Available at MAA.org/PtC

- Departmental dynamics
- Preparation for teaching for graduate students

7 or 8 Features of Successful Calculus Programs

1- Attention to placement issues
2- Attention to local data
3- Support for active learning
4a- Coordination of courses
4b- Regular meetings of course instructors
5- Solid GTA professional development
6- Strong student support services
7- Rigorous courses

Use of local data

Does your department have access to data to help inform decisions about your undergraduate program?

	PhD (131)	MA (84)
No	5%	5%
Yes, but not readily available	48%	52%
Yes, readily available	47%	43%

N (131 or 84) is number of departments

Use of local data

Which types of data does your department review on a regular basis to inform decisions about your undergraduate program?

	PhD (123)	MA (79)
Student performance (e.g., grades)	89%	86%
Student evaluations	87%	76%
Correlation with previous performance	49%	43%
Adherence to placement recommendations	45%	41%
Student persistence onto the next course	41%	41%
Student exit interviews	19%	17%
Communication with client disciplines	5%	4%

Collaboration and uniformity

For those terms in which more than one section of this course is offered, what aspects of the course are intended to be uniform across all sections?

When several instructors are teaching this course in the same term, how often do they typically meet as a group to discuss the course?

Common Elements of Calculus I	PhD	MA
Textbook	91%	90%
Topics to be covered	90%	93%
Schedule of when topics are covered	60%	20%
Midterms	44%	8%
Final exams	60%	22%
Online homework	45%	17%
Written homework	28%	4%
Quizzes	18%	1%
Course grading	49%	8%
Exam grading	50%	8%
Instructional approach	23%	5%

How frequently do instructors		
for the same course meet?	PhD	MA
Weekly	22%	6%
Biweekly	8%	2%
2-4 times per term	21%	26%
Once per term	21%	24%
Never	28%	43%

What is important vs where they are successful PhD programs

Primary style of instruction for Mainstream Calculus

35% of surveyed universities are using active learning in at least some sections

Some active learning (e.g. clickers), mostly lecture Mainly active learning (e.g. flipped classes), minimal lecture CBI = Computer based instruction
"Other" includes too much variation to specify one style

Mission: TPSE Math will facilitate an inclusive movement to strengthen post-secondary education in mathematics by working closely with--and mobilizing when necessary--faculty leaders, university administrations, membership associations, and relevant disciplinary societies in the pursuit of mathematically rich and relevant education for all students, whatever their chosen field of study. TPSE Math will identify innovative practices where they exist, advocate for innovation where they do not, and work with and through partners to implement and scale effective practices.

Sponsored by Carnegie Corporation of New York, the Alfred P. Sloan Foundation, and the National Science Foundation

A COMMON VISION

for Unders ${ }^{\text {raduate }}$ MathematicalSciences Progransin 2025

KarenSive Lhd Brotidy

Foroword by Cllam Erit' Krwan

Saxe, K., \& Braddy, L. 2016. A
Common Vision for Undergraduate Mathematical Science Programs in 2025. Joint report of AMATYC, AMS, ASA, MAA, SIAM.

Search for Common Vision at maa.org

Active Learning in Post-Secondary Mathematics Education 15 July 2016
> "We call on institutions of higher education, mathematics departments and the mathematics faculty, public policy-makers, and funding agencies to invest time and resources to ensure that effective active learning is incorporated into post-secondary mathematics classrooms."

Full statement at CBMSWEB.org.
Signed by presidents of AMATYC, AMS, ASA, MAA, SIAM and 10 other societies

