Alexandra Jilkine, University of Arizona, Tucson, AZ, USA Ryan Gutenkunst, University of Arizona, Tucson, AZ, USA

Mathematical Modelling of Mutation Initiation and Acquisition in Stem Cell Driven Cancers

Most tissues consist of three classes of cells: stem cells, transit-amplifying progenitor cells, and differentiated cells. Many tumors also have a hierarchical organization, with the bulk of the tumor composed of relatively differentiated short-lived cells with a limited replicative potential. Tumors are thought to be maintained by a small subpopulation of cancer stem cells (CSC), which have the capacity to proliferate indefinitely, and drive tumor growth. It is unclear whether CSCs originate from stem cells or from de-differentiated mature cells. We consider a hybrid stochastic deterministic model of mutation acquisition in stem cells and their progeny. We study the effects of competition between cells both at the stem cell level (in a stochastic model) and the progenitor level (in an age structured PDE model), as well as the effects of de-differentiation of progenitor cells to stem-cell like state. We give estimates on the necessary division and mutation rates to maintain a stable cohort of mutant transit-amplifying cells due to progenitor mutations alone. However, to obtain unlimited growth, de-differentiation from progenitor to stem cell state is essential. Interestingly, effects of de-differentiation only become important once homeostasis, which limits the number of cells in the stem cell pool, is lost.