

Biology Meets Math

MEASURING A FOREST

US Department of Homeland Security

Goals

- Be able to describe the area and distribution of forests in the United States
- Understand why it is important to measure and monitor forests
- Define terms: <u>biomass</u>, <u>crown</u>, <u>dendrologist</u>, <u>DBH</u>
- Find out what π (pi) has to do with measuring a tree
- Define and calculate stand density

- In 2010, there were 304,022,000 ha of forest in the United States
- The United States is 982,667,500 ha
- What percent of the United States' area is forested?

- In 2010, there were 304,022,000 ha of forest in the United States
- The United States is 982,667,500 ha
- What percent of the United States' area is forested?

$$\frac{Part}{Whole} \times 100\% =$$

- In 2010, there were 304,022,000 ha of forest in the United States
- The United States is 982,667,500 ha
- What percent of the United States' area is forested?

 $\frac{Part}{Whole} \times 100\% = \frac{304,022,000}{982,667,500} \times 100\% =$

- In 2010, there were 304,022,000 ha of forest in the United States
- The United States is 982,667,500 ha
- What percent of the United States' area is forested?

 $\frac{Part}{Whole} \times 100\% = \frac{304,022,000}{982,667,500} \times 100\% = 30.9\%$

Distribution of Forests in the US

Biomass:

Biological material from living or recently living organisms (mass per unit area)

What areas have the most forest **biomass**?

• Timber and pulp

- Timber and pulp
- Recreation

- Timber and pulp
- Recreation
- Fire Management

- Timber and pulp
- Recreation
- Fire Management
- Ecological Reasons

 Wildlife habitat

- Timber and pulp
- Recreation
- Fire Management
- Ecological Reasons
 - Wildlife habitat
 - Air quality

- Timber and pulp
- Recreation
- Fire Management
- Ecological Reasons
 - Wildlife habitat
 - Air quality
 - Climate change

The Many Names of Forest Scientists

- A forest scientist can have many different titles
- One is a dendrologist, a person who studies trees and other woody plants

Dendro = (Greek: Tree or Tree-like)

Dowan Grant, Senior Forester and Dendrologist, Jamaican Forestry Department http://www.virtualherbarium.org

Emily Moran, Forest Ecologist, National Institute for Mathematical and Biological Synthesis

Jennifer Franklin, Tree Physiologist, University of Tennessee

Measuring a Tree

We can see that trees come in all shapes and sizes ...

Birch 🌙

... so how can we measure how they're different?

Elm

Parts of the Tree

How do we measure something so big?

Common Height Measurements Dendrologists Make

Common Width Measurements Dendrologists Make

Width of Crown

NSF

What is **DBH**?

Diameter at Breast Height

Diameter of the tree 4.5 feet above forest floor on the uphill side
Avoids the swell at the base of the trunk

How can you use circumference to find diameter?

How can you use circumference to find diameter?

- Practice using $C = \pi D$
- C = circumference
- D = diameter
- *π* ≈ 3.14

- 1. D = 2, C = ?
- 2. D = 6, C = ?
- 3. D=1, C = ?
- 4. C = 3.14, D = ?
- 5. Radius (R) = 3, D = ?
- 6. For every 1 inch increase in diameter, the circumference increases _____ inches.

Was it easy as π ?

- Practice using $C = \pi D$
- C = circumference
- D = diameter
- $\pi \approx 3.14$

- 1. D = 2, C = ? **π** * **2** ≈ 6.28
- 2. D = 6, C = ? **π** * **6** ≈ 18.84
- 3. D=1, C = ? **π** * **1** ≈ 3.14
- 4. $C = 3.14, D = ? 3.14 / \pi = 1$
- 5. Radius (R) = 3, D = ?

D=2R, so ... 2 * 3 = 6

For every 1 inch increase in diameter, the circumference increases <u>~3.14</u> inches.

Problem & Solution

- You are a forester collecting tree DBH data
- You'd rather not bring a calculator into the field with you
- Can you invent something that, if you use it to measure the circumference, it automatically gives you the diameter?

Make Your Own DBH Tape

Mark off every pi (3.14) inches
What is 0.14 of an inch?
Somewhere in between 1/8" and 3/16"
Test it out!

Test Your DBH Tape

- What is the diameter of your tree cookie using a ruler?
- What is the diameter of your tree cookie using your DBH tape?
- What is the diameter of your head?
- What is the diameter of your leg?

A Forest is Many Trees

Chequamegon National Forest, WI

Mendocino Pygmy Forest, CA

How to describe the difference with numbers?

Stand Density

Stand Density =

 $= \frac{\text{number of trees}}{\text{area of stand}}$

- Count the number of trees (10)
- 2. Find the area (L*W) of the stand (15 ft * 25 ft = 375 ft^2)
- 3. Divide the numerator by the denominator (10/375 = 0.03) trees/ft²)

NIMBIOS National Institute for Mathematical and Biological Synthesis

Which one has greater stand density?

Chequamegon National Forest, WI

Mendocino Pygmy Forest, CA

Probably Forest B!

A "Forest" of Humans

If the people in this classroom were trees, and this classroom were our plot ...

What would be our stand density?

Looking for More?

- Check out our modules on calculating biodiversity!
- Real forest monitoring data available at

http://daac.ornl.gov/OTTER/guides/Runnings_For est_BGC_Model.html

For this Module & More:

Report Your Results Join our Number Lin

- Website: www.nimbios.org
- See what we're all about
- Sign up for our bimonthly email newsletter
- Check our blog

