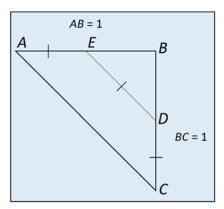
Using Algebra to Solve a Geometry Problem with Two Strategies

Consider the isosceles right triangle ABC where AB = BC = 1 (Figure 1). Find CD so that AE = DE = CD.



Using Algebra to Solve a Geometry Problem with Two Strategies

Consider the isosceles right triangle ABC where AB = BC = 1 (Figure 1). Find CD so that AE = DE = CD.

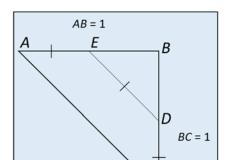


Figure 1. Isosceles triangle ABC.

Strategy 1

Let BD = BE = x. Since triangle EBD is also an isosceles right triangle, using $x^2 + x^2 = (DE)^2$, then $DE = x \sqrt{2}$. Also, CD the is 1 - x. If CD = DE, then $1 - x = x \sqrt{2}$. Solving for x leads to

$$x = \frac{1}{1 + \sqrt{2}} = \sqrt{2} - 1 = BD.$$

Since CD = 1 - x, $CD = 2 - \sqrt{2}$. Additional confirmation that this solution is correct comes from the observation that

$$DE = x\sqrt{2} = \sqrt{2}(\sqrt{2} - 1) = 2 - \sqrt{2}$$
.

Strategy 2

Another solution could be to label BD = y. Then, use the Pythagorean theorem to find the value of y in the isosceles right triangle EBD. BD = BE = 1 - y leads to

$$(1-y)^2 + (1-y)^2 = y^2$$
 or
 $2y^2 - 4y + 2 = y^2$ or
 $y^2 - 4y + 2 = 0$.

Working with the quadratic formula results in two solutions

$$2 - \sqrt{2}$$
 and $2 + \sqrt{2}$.

Since $2 + \sqrt{2} > 1$, this is rejected as a solution. CD = $2 - \sqrt{2}$.

Adapted by Greg Wiggins and Suzanne Lenhart from Marion. 2018. Two Problem-Solving Strategies Pay Off. Mathematics Teacher 111: 549-555.