Malaria Dynamics within the Mosquito

Olivia Prosper
Department of Mathematics
University of Tennessee

Oct. 31, 2020

Acknowledgements

Lauren M. Childs
Department of Mathematics
Virginia Tech

Outline

- Background
- Biology -> Models
 - Measuring parasite diversity
 - Measuring time to infectiousness

Malaria Burden

- 228 million new infections in 2018
- 405,000 deaths
- 272,000 in children <5 years of age.
- Greatest mortality caused by *Plasmodium* falciparum

P. falciparum life-cycle

- Asexual reproduction within vertebrate host
- Sexual reproduction within femaleAnopheles mosquito

Why study diversity?

New strains can evade immune system

- Challenges drug & vaccine development
 - First-line treatment in malaria endemic countries:
 - Artemisinin-based combination therapies
 - Vaccine Development
 - RTS,S/AS01 (Mosquirix)
- (Potentially) increased infectivity with Multiplicity of Infection (MOI), more severe symptoms

Contributors: Superinfection, Sexual Reproduction, Mutation

Methods

- Stage I:
 - Model within-vector dynamics of two genotypes
 - Three fitness biases: 0%, 10% and 50%
 - Reproduce variation in parasite numbers across mosquitoes
- Stage II:
 - Simulate mechanisms generating novel sequences
 - Reassortment & Recombination
 - No Mutation
 - Quantify diversity generated

Model Framework

Stage I: Parasite Life-Cycle Model

- Teboh-Ewungkem, M. I., T. Yuster, and N. H.
 Newman. *Infectious Disease Modelling Research Progress* (2010): 177-199.
- Teboh-Ewungkem, Miranda I., and Thomas Yuster. *Journal of Theoretical Biology* 264.2 (2010): 273-286.

ODE Flowchart

State Variable	Description
M	Male Gamete
F	Female Gamete
Z	Zygote
Е	Ookinete
0	Oocysts
S	Sporozoites

$$k(t) = \begin{cases} 0, & \text{if } 0 < t < t_0 \\ d, & \text{if } t \ge t_0 \end{cases}$$

$$M' = -aM - rMF$$
 $F' = -bF - rMF$
 $Z' = rMF - (\sigma_z + \mu_z)Z$
 $E' = \sigma_z Z - (\sigma_e + \mu_e)E$
 $O' = \sigma_e E - (k(t) + \mu_o)O$
 $S' = n_0 pk(t)O.$

Single Genotype Stochastic Analog

Continuous Time Mark	ov Chain	$(M_0, F_0, 0, 0, 0, 0)$
		(M, F, Z, E, O, S)
Event	Probabilities	Transitions
Death of Male gamete	$aM\Delta t + o(\Delta t)$	(-1,0,0,0,0,0)
Mating	$rMF\Delta t + o(\Delta t)$	(-1, -1, 1, 0, 0, 0)
Death of Female gamete	$bF\Delta t + o(\Delta t)$	(0, -1, 0, 0, 0, 0)
Death of Zygote	$\mu_z Z \Delta t + o(\Delta t)$	(0,0,-1,0,0,0)
Zygote to Ookinete progression	$\sigma_z Z \Delta t + o(\Delta t)$	(0,0,-1,1,0,0)
Death of Ookinete	$\mu_e E \Delta t + o(\Delta t)$	(0,0,0,-1,0,0)
Ookinete to Oocyst progression	$\sigma_e E \Delta t + o(\Delta t)$	(0,0,0,-1,1,0)
Death of Oocyst	$\mu_o O \Delta t + o(\Delta t)$	(0,0,0,0,-1,0)
Bursting of Oocyst (sporozoite production)	$k(t)O\Delta t + o(\Delta t)$	(0,0,0,0,-1,n)

$$k(t) = d\beta(t)$$

$$\beta(t) = (1 + \exp(t_0 - t))^{-1}$$

Single Genotype Dynamics

Initial Gemetocyte Density, G ₀	Sporozoite Prevalence, Day 21
150	62.90
200	82.98
250	92.95
300	97.42
350	99.47
400	99.84
450	99.95

Extension to two genotypes

Model Framework: Stage II

Model Framework

Barcode Characterization

- Distinguishes between genetically different *P. falciparum* parasites.
- Sequence of 24 Single Nucleotide Polymorphisms (SNPs),

2 Alleles

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Daniels, Rachel, et al. "A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking." *Malaria Journal* 7.1 (2008): 1.

Barcode SNP Locations

SNP	Chromosome	Position
1	1	130573
2	1	539044
3	2	842803
4	4	282592
5	5	931601
6	6	145472
7	6	937750
8	7	277104
9	7	490877
10	7	545046
11	7	657939
12	7	671839
13	7	683772
14	7	792356
15	7	1415182
16	8	613716
17	9	634010
18	10	82376
19	10	1403751
20	11	117114
21	11	406215
22	13	158614
23	13	1429265
24	14	755729

Daniels, Rachel, et al., Malaria Journal 7.1 (2008): 1.

Generation of Parasite Diversity

- Each gametocyte defined by sequence of length L=24.
- Each position taken from alphabet of length A=2, representing two alleles.

Male gamete

Female gamete

Oocyst

Sporozoites

Results: Sequence Diversity Model

Number of Unique Sequences

Onward transmission: how complex is the infection?

Childs, Lauren M., and Olivia F. Prosper. "Simulating within-vector generation of the malaria parasite diversity." PloS One 12.5 (2017): e0177941.

Measuring time to infectiousness

- EIP: Extrinsic Incubation Period
- Period between infection and infectiousness
- Gametocytes to release of sporozoites

Controlled Experiments

- Introduced ookinetes per microliter
- Measured oocyst number over time
- Recorded sporozoite score over time

Oocyst Count

Figure 6.14 – Ookinete to oocyst model results. Black lines indicate model output ookinete density with time (left-hand axis); coloured lines represent model output oocyst density with time (right-hand axis). Markers represent mean oocyst density raw data. Ookinete density fed per μl of blood: A 100: B 400: C 2000: D 100: E 400: F 2000: G 50: H 250: I 1000.

Sporozoite Score

Figure 6.16 – Oocyst to sporozoite density model results. Lines indicate model output sporozoite score with time. Markers represent mean sporozoite score experimental data. Ookinete density fed per µl of blood: A 100; B 400; C 2000; D 100; E 400; F 2000; G 50; H 250; I 1000.

Previous Models

Multiple ookinete stages

Figure 6.13 – Ookinete to oocyst model. A Summary of model structure. B Model equations. C Parameter and variable definitions.

Multiple oocyst stages

Figure 6.15 – Oocyst to sporozoite models. A Summary of model structure, beginning with O₁, oocyst density 10 days post-engorgement. B Model equations. C Potential model outputs. D Parameter and variable definitions.

Our models

Models differ by how we incorporate bursting

(b) Model 2

$$k(t) = \frac{k}{1 + \exp(t_b - t)}$$

Choosing between models

- Number of oocyst compartments in Model 1
- Model 1 vs Model 2

Comparing Models

Comparing models

Akaike information criteria with correction (AICc)

$$\mathsf{AICc} = 2D - 2\ln(\mathcal{L}) + \frac{2D^2 + 2D}{M - D - 1}$$

D is number of parameters, \mathcal{L} is likelihood, M is sample size

Calculating time to infectiousness (EIP)

Time to infectiousness

Sensitivity of EIP to parameters

Model 1 Model 2

Summary

- Parasite diversity
 - Stochasticity in parasite dynamics is important
 - New parasite sequences are frequently passed on
- Estimating time to infectiousness
 - Identified parameters of interest
 - Fraction of bursting oocysts is important
 - Intermediate initial ookinete densities promote transmission
 - Caveats:
 - Ignores variation early in mosquito
 - Particular parasite species and mosquito combination
 - Disagreement in model of choice

Thank you!

Questions?

Childs and Prosper. "Simulating within-vector generation of the malaria parasite diversity." *PloS One* 12.5 (2017): e0177941.

oprosper@utk.edu

Childs and Prosper. "The impact of within-vector parasite development on the extrinsic incubation period." *R. Soc. Open. Sci.* (2020): **7** 192173.