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1 Overview

Aging can be quantitatively defined by mortality rate µ(t),

Mortality rate: µ(t) = − 1

S(t)

dS(t)

dt
,

where t is time, and S(t) is viability. Aging has been observed in bacteria,
yeast cells, and many other organisms. An organism is non-aging when µ(t) is
a constant, as is the case in bacterial phages. To explain how aging emerges
from biological complexity, I proposed a network model for cellular aging. The
key idea is that cellular aging is an emergent property of gene networks.

In the summer of 2013 at NIMBioS, I concentrated on further developing
network models for cellular aging. My major efforts were to explore the effect
of network configuration on network aging, develop a computational framework
for limiting network modules on aging, and investigate the network impact on
lifespan as a quantitative trait, detailed below.

My effort has led to following outcomes:

• Revised manuscript on network model for cellular aging.

• An NSF grant proposal on network model of cellular aging and its appli-
cations, submitted in July, 2013.

2 Network configuration and network aging

Biological networks tend to be power-law: the degree of nodes (k) follows P (k) ∼
k−γ . Here, we only need to focus on the essential genes for network aging. Let’s
assume that

P (k) =
1

C
k−γ for k � klow (1)



where klow the lower bound of vertex degrees, and C is a normalizing factor.
For m number of essential genes,

Number essential genes with degree k = mP (k) =
1

C
mk−γ (2)

For simplicity, let’s assume no interaction between essential genes. Let’s desig-
nate the chance of an essential gene’s interaction to be active is p. The mortality
rate of the entire network µnet is the sum of mortality rate of all essential mod-
ules:

µnet =

m∑
j=klow

µj sum of all essential modules

(3)

Therefore, we have

µnet ∼mc
kmax∑
k=klow

P (k)

k∑
i=1

(
k

i

)
pi(1 − p)k−iiλ(λt)i−1 (4)

Because i
(
k
i

)
= k

(
k−1
i−1

)
, we have

µnet ∼mc
kmax∑
k=klow

P (k)λkp

k∑
i=1

(
k − 1

i

)
(ptλ)i−1(1 − p)k−i

=m

kmax∑
k=klow

P (k) Rk e
Gkt (5)

where

Rk =ck(pλ)ktk−1
0

Gk =
k − 1

t0
for k = klow, klow + 1, . . . kmax

Parameter Rk and Gk are the initial mortality rate and Gompertz coefficient
for a network module in which an essential gene interacts with k non-essential
genes. Hence, Eq 5 suggests that the network mortality rate can be calculated
from the weighted mean of modular network mortality rates.

3 Results on limiting modules and quantitative
trait

I found a general framework to study the effect of limiting modules on network
aging (Fig 1 ). We can partition the limiting module under study and the
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remaining network into two super nodes, X and Y , each with its own viability
function, S(X) and S(Y ). Parallel and serial configurations of X and Y are
the two special cases, and their viability functions can be found based on the
reliability theory. The mixture of the two special cases can then describe the
viability of the network as a system. I am developing numerical methods to
apply this general framework to evaluate experimental lifespan data.

This network framework on limiting modules can be extended to study lifes-
pan as a quantitative trait. In the simple case of a two-locus model, analytic
solutions for the variance of network lifespan can be found. Comparison to
the linear model used in the quantitative genetics can then shed lights on the
missing heritability problem.

Figure 1: A general framework to study limiting modules for network aging
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