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Summary 

The use of antimicrobials in human and veterinary medicine has brought tremendous benefits to both 

humans and animals; benefits that are increasingly threatened by the development of antimicrobial 

resistance (AMR). The Food and Drug Administration (FDA) is in the final year of implementing new risk 

mitigation measures to promote judicious use of medically-important antimicrobials in food animals. 

However, the relationship between antimicrobial use (AMU) and resistance is complex, and a suitable 

analytical framework to analyze this relationship, and evaluate the success of interventions, is not yet 

available. A systems science analysis, which clearly depicts the variables and associations among them, 

would greatly enable selection of mathematical or epidemiological options to evaluate the question at 

hand. Such an analysis would allow more efficient resource allocation, by identifying data that are most 

informative for evaluating surveillance and mitigation strategies.  

This National Institute for Mathematical and Biological Synthesis (NIMBioS) AMR Working Group’s report 

proposes a framework to fill the methodological gap for associating AMU in livestock (measured at the 

population level) and AMR in foodborne bacteria. The framework comprises specific analytical methods 

and sources of quantitative data to model selection pressure and effect. Results of such models can help 

evaluate how drug use practices (and interventions directed at changing them) impact AMR. 

Pharmacokinetic/dynamic modeling techniques are proposed for projecting selection pressure (i.e., 

enteric concentrations of antimicrobials) on bacteria that promotes AMR. Two methods are identified to 

model resistance: phenotypic methods, which model changes in AMR in the food supply (i.e., at farm, 

slaughter, and retail) based on antimicrobial susceptibility testing; and evolutionary genotypic analyses 

which determine the molecular details underlying changes in phenotypic AMR. Systems science analysis 

is used to integrate these methods to show how resistance in the food supply can be explained by drug 

use, and concurrent factors which influence how the whole system behaves. Overall, this modeling 

process is necessarily iterative in nature and will be continuously updated with new data to improve 

prediction accuracy and inform improvements for AMU and AMR surveillance systems.   

The FDA’s judicious use strategy will be fully implemented in 2017; the first data after this will be collected 

in 2017 and 2018, and likely will not be reported publicly until 2019. Meanwhile, the methods identified 

in this framework are sufficiently developed to be applied to existing data now. For example, the proposed 

phenotypic resistance methods can be applied to evaluate previous interventions, such as the 2005 

withdrawal of fluoroquinolones from poultry water medications. The pharmacokinetic/dynamic modeling 

can be applied to identify AMU practices that impose the largest selective pressures. Each method in the 

framework would also benefit from further development.  

Working group participants are pursuing research proposals to finish development, testing and validation 

of the proposed methods, as well as to more fully merge AMU, pharmacokinetic/dynamic, phenotypic, 

and evolutionary genetic models into an even more cohesive framework. The systems science analysis 

section could potentially be further refined through another NIMBioS Working Group. 
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1 Introduction   

1.1 Drug Resistant Bacteria in the US Food Supply 

The use of antimicrobial drugs in human and veterinary medicine has brought tremendous benefits to 

both humans and animals over the past century, benefits increasingly threatened by the development 

and progression of antimicrobial resistance (AMR). While AMR can be naturally-occurring, antimicrobial 

use (AMU) in animal agriculture, human medicine, and other settings is a major selection pressure for 

acquired AMR. Antimicrobial resistance and the resulting reduction in drug effectiveness threaten both 

public and animal health (Marshall and Levy, 2011; Oliver et al., 2011). It is thus vital that antimicrobials 

be used responsibly to preserve their effectiveness. 

Globally and nationally, there is much attention to developing approaches to mitigate AMR. For example, 

the World Health Organization has created a Global Action Plan on Antimicrobial Resistance 

(http://apps.who.int/iris/bitstream/10665/193736/1/9789241509763_eng.pdf?ua=1). Several nations 

have developed national action plans 

(http://www.who.int/drugresistance/documents/situationanalysis/en/), including the United States; the 

White House recently released a National Action Plan for Combating Antibiotic Resistant Bacteria 

(https://www.whitehouse.gov/sites/default/files/docs/national_action_plan_for_combating_antibotic-

resistant_bacteria.pdf; the NIMBioS working group is referenced under Sub-Objective 4.1.1). 

Having considered scientific information and public policy, the FDA initiated a risk-mitigation strategy to 

promote judicious use of medically important antimicrobial drugs in food animals (FA). In April 2012, the 

FDA released its Guidance for Industry (GFI 209) which states: “Limit medically important antimicrobial 

drugs to uses in food-producing animals that are considered necessary for assuring animal health and that 

include veterinary oversight or consultation”. In December 2013, the FDA issued another guidance 

document, GFI 213, spelling out the process for achieving the objectives laid out in GFI 209. It included 

the process for pharmaceutical companies to withdraw growth-promotion claims from labels of products 

containing medically important antimicrobials. The FDA is giving the companies until December 2016 to 

make these changes. Also in December 2013, the FDA issued a proposed rule to amend its regulations 

relating to veterinary feed directive drugs to bring them into compliance with GFI 209. Hence, the FDA 

mitigation strategy has two principles: (1) phasing out growth-promotion use of these antimicrobials; and 

(2) phasing in veterinary oversight on the remaining therapeutic use of such drugs (FDA, 2012, 2013). 

Determining the effectiveness of the FDA mitigation strategy is the subject of this report. Classic 

epidemiological methods commonly used to assess the effects of AMU on resistance must be improved 

to assess the impact of FDA guidances (and other potential system-wide interventions) because of the 

lack of standardized metrics (including data) on AMU (exposure) and the complexity of the measured 

outcome (patterns or prevalence of AMR).  

Based on our work as the National Institute for Mathematical and Biological Synthesis (NIMBioS) AMR 

Working Group (NIMBioS WG (denoted ‘the Working Group’) 

(http://www.nimbios.org/workinggroups/WG_amr)), we have identified publicly available data and 

http://apps.who.int/iris/bitstream/10665/193736/1/9789241509763_eng.pdf?ua=1
http://www.who.int/drugresistance/documents/situationanalysis/en/
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modeling approaches which may be used. Data are measured at many levels (Figure 1). We recommend 

applying the systems approach – a widely, successfully used methodology that has supported decision-

making and intervention evaluation in other realms of complex systems, such as engineering, public health 

and ecology, to the assessment of efficacy of mitigation of AMR. The methodology described in this report 

will allow much needed evaluation of intended risk reduction policies, providing useful feedback for 

informing both national and global efforts. 

 

Figure 1. Temporal scale and hierarchical levels at which data are measured. Current measures (solid 

boxes) of the exposure - antimicrobial use (AMU) - are derived from yearly national sales data for food 

animal antimicrobials. Current indicators of antimicrobial resistance (AMR) are measured for the type of 

food animal (FA). Both measures provide a snapshot in time (point estimates) of the item measured. Initial 

models must make assumptions about the extent of time these point estimates cover until more temporal 

coverage data are obtained. Dashed boxes indicate the data expected to be available for model use. 

1.2 The NIMBioS AMR Working Group 

NIMBioS is a National Science Foundation (NSF) Synthesis Center supported through NSF's Biological 

Sciences Directorate via a Cooperative Agreement with the University of Tennessee. NIMBioS supports 

cutting-edge, cross-disciplinary research at the interface of mathematics and biology with a vision to:  

1) address key biological questions by facilitating the assembly and productive collaboration of 

interdisciplinary teams; and  

2) foster development of the critical and essential human capacity to deal with the complexities of 

the multi-scale systems that characterize modern biology.  
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The FDA’s implementation of its risk-mitigation strategy creates a unique opportunity to evaluate the 

success of this imminent intervention. An interagency group (involving the FDA, USDA, and CDC) was 

formed to develop an approach to collect additional information to detect shifts in AMU and 

corresponding impacts on AMR due to the new FDA recommendations. These ongoing interagency 

activities require a suitable mathematical framework to identify and prioritize specific data and analytical 

approaches to analyze effects of the interventions on resistance. No suitable integrative model currently 

exists; development of such a framework requires integration of diverse fields and synthesis at multiple 

levels, and will benefit from development of new mathematical and computational approaches. A 

NIMBioS Working Group with scientists from the FDA, USDA, CDC, other government agencies, and 

academia was organized in 2014 to identify such an analytic framework and data needs 

(http://www.nimbios.org/workinggroups/WG_amr). The multi-disciplinary working group, which drafted 

this report, included veterinarians, epidemiologists, regulatory experts, mathematicians, microbiologists, 

and system engineers. 

1.3 Objectives of this Project 

1. Identify and develop an analytic methodology, applicable to the types of data that are or will be 

available, to analyze observed changes in AMU patterns and AMR (including 

conceptual/mathematical/epidemiologic/statistical models and parameter estimation). This is a 

vitally needed new integrative approach to assess this complex biological phenomenon. 

2. Identify useful, quantitative variables based on the above framework allowing analysis of the 

relationship between observed changes in AMU practice in FA and AMR patterns in the food 

supply as the FDA implements its risk mitigation strategy. This is a unique opportunity to inform 

the approach to monitoring and assessing impacts of the interventions, allowing collaborating 

federal agencies to efficiently allocate limited resources by targeting the most valuable data. 

This project is also represented as a one-year milestone under Sub-objective 4.1.1. of the US National 

Action Plan for Combating Antibiotic Resistant Bacteria (CARB)1: 

“A National Institute of Mathematical and Biological Synthesis (NIMBioS) working group will 

develop an analytic modeling framework for assessing the relationship between antibiotic use in 

livestock (measured at the population level) and the development of antibiotic resistance.” 

The underlying concept is that GFI #213 will impact resistance (in the food supply) by impacting AMU in 

food animals (Figure 2). 

 

                                                           
1 https://www.whitehouse.gov/sites/default/files/docs/national_action_plan_for_combating_antibotic-

resistant_bacteria.pdf 
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Figure 2. A simple depiction of an extremely complex underlying system of the anticipated relationship 

between Guidance for Industry 213, antimicrobial use in food animals, and antimicrobial resistance in the 

food supply. 

The Working Group used the following basic process to develop the modeling framework: 

1. Formalized the scientific question that the modeling framework will address 

2. Established the boundaries of the system that need to be modeled to answer the question 

3. Identified the analytic methods needed to model the system or subsystem(s) of interest 

4. Evaluated the performance of the modeling framework (select aspects) using existing data 

5. Identified additional data which were the most important for improving the performance of the 

modeling framework 

To develop an analytic modeling framework we needed to further formalize the underlying scientific 

question under study. The Working Group’s initial proposal used the following language: 

“…associating population-level changes in antimicrobial use in livestock with population-level 

changes in antimicrobial resistance.” 

The US National Action Plan used the following language: 

“…assessing the relationship between antibiotic use in livestock (measured at the population 

level) and the development of antibiotic resistance.” 

The Working Group discussed the need to demonstrate associations between use and resistance in order 

to gain support to conduct surveillance. This conflicts with having little real data to parameterize models 

to determine whether an association exists, resulting in circular discussions. Although these were 

challenging issues to communicate, the multidisciplinary team showed its strength by bringing together 

many viewpoints of technical experts in different fields. Ultimately the group determined that this was an 

epidemiologic question of association between an outcome factor (typically a disease outcome; in this 

case, AMR) and one or more explanatory factors (or risk factors; in this case specifically focused on AMU 

GFI #213 Resistance  

Drug 

Use 
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in livestock). Further refining the concept of association to focus on explaining observed variation, the 

Working Group arrived at the following formal scientific question: 

What proportion of the observed variation in antimicrobial resistance within bacteria in the 

food supply can be explained by the observed variation in antimicrobial drug use in food-

producing animals?  

Figure 3 illustrates the complexity of this question; there are several important points to note regarding 

this question. First, one must be careful to distinguish association from causality, the former being 

necessary but not sufficient for the latter. 

 

Figure 3. Temporal scale and hierarchical levels at which the scientific questions were posed. The figure 

indicates a) the hierarchical level(s) of Use (U) or Resistance (R) the questions pose by circles and b) the 

possible levels to which resistance is implied by the question. For example, the question posed in the US 

National Action Plan CARB points to the development of resistance, which can occur or be influenced at 

several levels. The initial working group posed question addresses resistance at the population level, 

which could be at the food animal (FA) or societal level, if measuring resistance in the human population. 

The currently posed question specifically examines resistance at the bacterial level in the food supply and 

whether any change in that resistance can be attributed to changes in antimicrobial use in the FA 

populations. Solid boxes capture individual questions (where the only temporal aspect is the implied use 

before resistance); dashed boxes indicate the temporal scope of answering the questions and the 

hierarchical level indicates the data required to answer the questions. 
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Second, as well as potentially missing subtle individual-level effects due to aggregation (and sampling 

delay), the population-level focus of this question raises concerns of the “ecological fallacy.” This relates 

to the potential for an effect to be observed at the population level even though there is no effect at the 

individual level. We therefore take extra care to remember that while these methods are intended to 

detect national-level associations they do not allow us to fully understand underlying mechanisms. 

Third, the outcome (“antimicrobial resistance in bacteria in domestically-produced meat and poultry”) is 

actually a collection of several factors tested on each experimental unit (i.e., it is a multivariate outcome). 

For example, individual bacterial colonies (isolated from the food supply or any other place) are typically 

tested for susceptibility to a long (but nowhere near exhaustive) list of antimicrobial drugs, using one or 

more different techniques (e.g., broth microdilution assay +/- whole genome sequencing, etc.). This has 

bearing on the techniques appropriate for analyzing these data. 

Fourth, the explanatory factor (“antimicrobial drug use in food animals”) is neither the biological 

interaction of interest (exposure of bacteria to antimicrobials) nor does it have a consensus measure. 

Knowledge of the biology of AMR and animal-derived food supply system is thus critical to identify the 

most appropriate measures to characterize this explanatory factor for purposes of this project. 

Several approaches to model select sections of the overall AMU/AMR problem space were discussed. All 

have advantages and disadvantages. While simplicity is desired and often requested, the working group 

concluded that no one model could adequately address all aspects of the AMU/AMR system at the same 

time. Rather a suite of models is necessary to provide estimates of uncertainty around the conclusions 

about associations between AMU and AMR and the effectiveness of policies which may affect either or 

both. These models can be used independently to answer questions geared towards a specific section of 

the system or in a combined manner to address questions geared towards the more complete system. 

1.4 System Boundaries 

A systems approach was needed to address the issue tasked to the Work Group. A systems approach aids 

in understanding complex systems2 so that the subsystems making up the overall system can be designed, 

integrated and tested to effectively study the system’s behavior. A systems approach has the advantages 

of helping to define the scope of the system (complex reality vs. what necessarily bounds the system 

according to the question posed), including key stakeholders’ considerations while investigating solutions, 

making sure key data points and variables are considered, to link models created to evaluate select 

sections of the system, and to highlight the models that are proposed to answer the question vs. the 

models which could be used/validated based on currently available data.  

                                                           
2 A complex system is any system featuring a large number of interacting components (agents, processes, etc.) 

whose aggregate behavior is nonlinear (not derivable from the summations of the activity of individual 

components) and typically exhibits hierarchical self-organization under selective pressures. 
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Most policymakers prefer simple systems, which AMU/AMR is not. How AMU in FA influences AMR in 

food products is not well understood. Many antimicrobials are used (for production purposes or 

therapeutically) in FA. Additional antimicrobial drugs will likely be developed, though likely few new 

antimicrobial classes in the near future. Antimicrobials are currently used both singly and in combinations, 

including in combinations with heavy metals. 

There are numerous FA types and their production scenarios, e.g., cattle (dairy, beef, veal), chickens 

(broilers, table egg layers), turkeys, pigs, shellfish, finfish, sheep, goats, etc. The working group limited 

their scope to the major FA species (cattle, pigs, chickens, and turkeys). Also, numerous food products are 

derived from each FA, e.g., cattle products include beef, organ meat, veal, ground beef, and tartar. 

Processing factors at or before retail of these products must be included in a comprehensive approach to 

investigating an overall AMU/AMR association. The question posed includes these as a pathway between 

use and resistance, but current surveillance provides insufficient data to determine the scale of influence 

of the processing factors. Antimicrobial resistant bacteria occur naturally and more species and strains of 

these bacteria will continue to emerge. Hence, the framework for the study of AMU/AMR should be 

sufficiently generalizable for future inclusion of new bacteria and drugs. In addition, numerous genes 

confer AMR (e.g., dozens of tet genes confer resistance to tetracycline). Some genetic elements are 

chromosomal in nature and some are carried on transferable elements (plasmids, transposons, integrons). 

Figure 4 illustrates just part of the hierarchies (and aspects within them) involved in answering the 

AMU/AMR association question, looking only at FA. 

 

Figure 4. Hierarchical nature of the food animal (FA) industry and factors impacting antimicrobial 

resistance (AMR) with FA-specific factors. Pressures on AMR have many factors dependent on the specific 

FA and at different scales within the FA industry, consumer and society. For instance, using the lens of 

broiler chickens, there are resistance genes/bacteria specific to broilers, and commensals and pathogens 

of public health concern. Broiler-specific factors include vaccination practices, antimicrobial treatment 

etc. At the consumer level, demand for specific product types and food preparation styles play a role. At 

the societal level, factors like international trade agreements and whether a food item is imported or 

domestic play a role. 



12 

 

Given the scale and complexity of the AMR issue, even when restricted to foodborne bacteria and the 

selective pressures due to drug use in FA, it is important to clearly establish the scope and boundaries of 

this project (Figure 5). 

 

 

 

 

 

 

Figure 5. Summary of the scope of this project using the foodborne antimicrobial resistance risk pathway; 

red = primary focus, blue = in scope, grey = beyond the scope (e.g., disinfectant use in slaughter plant 

(may be linked with some resistances); non-antimicrobial changes in management practices; consumer 

demand). 

First, population-level effects, particularly at the national scale, are the primary interest of this project. 

This is not to say that finer scales (e.g., animal, pathogen) of the system are beyond its scope—in fact they 

are likely critical to understanding the issue at the national level. However, we determined that this work 

would focus on addressing AMU and AMR at the national level. The relevance of international aspects 

(including movement of people, animals, food products, and drugs) is well-documented, but outside the 

scope of this particular project. The geospatial upper bound of our system will thus be the continental US. 

The lower bound will extend to the genetic/molecular level. 

Second, the National Antimicrobial Resistance Monitoring System (NARMS) provides additional system 

boundaries which are both appropriate for this project (given similar focus on resistance in foodborne 

bacteria) and also practical in terms of data availability. These bounds include:  

 bacteria (i.e., Salmonella, Campylobacter, Escherichia coli, and Enterococcus),  

 animal species (i.e., those that the FDA considers the “major food species”: cattle, swine, chickens, 

turkeys), and  

 sampling site (e.g., animals at slaughter and retail meat). 

Although NARMS also samples clinical isolates from humans with enteric infections (see CDC NARMS)3, 

that part of the risk pathway was excluded from the scope of this project due to its distance from the 

primary biological point of interest (i.e., the lower gastrointestinal tract of food animals) and the 

expectation that observed effects at this site would be greatly “diluted” by other factors pertinent to 

                                                           
3 http://www.cdc.gov/narms/reports/ 
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human populations. Use of antimicrobials in human medicine is similarly beyond the scope of this project. 

Figure 6 shows an example of system boundaries for the food supply system. 

  

Figure 6. An example of boundary setting for food supply system (GFI= Guidance for Industry; 

AMR=antimicrobial resistance). The rectangle denotes the system boundaries.  The factors outside the 

box are currently not considered. 

Regarding the scope of drugs, the specific drugs NARMS evaluates within the abovementioned target 

bacteria are based mainly on human clinical relevance, and do not necessarily cover all drugs (or even 

drug classes) directly impacted by GFI #213. Furthermore, since we might anticipate (and be greatly 

interested in) changes in resistance to drugs that are not directly impacted by this (or any other) specific 

intervention, we are expanding our drugs of interest beyond the NARMS panels to all antimicrobial new 

animal drugs4 approved by the FDA for use in FA. This excludes compounds with antimicrobial activity 

which are not considered “new animal drugs” (e.g., disinfectants) or otherwise not currently regulated by 

the FDA. 

Given the complexity of the AMU/AMR system, and the numerous unknowns, for the first set of models 

we will not include environmental or climatological factors unless they are known selection pressures on 

resistance and there are data sufficient to not induce additional uncertainty.   

                                                           
4 New animal drug: A new animal drug is defined, in part, as any drug intended for use in animals other than man, 

including any drug intended for use in animal feed, the composition of which is such that the drug is not generally 

recognized as safe and effective for the use under the conditions prescribed, recommended, or suggested in the 

labeling of the drug (21 U.S.C. § 321(v)). 
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As the boundary on the system under study becomes tighter, one might think that model results will 

become more precise. That may sometimes be true, but accuracy is more important than precision.   

1.5 The Organization of This Report 

Given the system scope and data availability, the following methods were identified as critical 

components of our analytic framework, those for analysis of: 

Antimicrobial Drugs in Food Animals:  describes factors impacting AMU in FA; reviews indices 

describing use at the level of animals on farms; and presents methods for how exposure of enteric 

bacteria within the animals to the antimicrobials or their active metabolites can be estimated 

(extending the animal-level estimates to represent the actual antimicrobial exposure of 

foodborne pathogens) 

Phenotypic Resistance in Bacteria in the Animal-Derived Food Supply:  identifies methods to 

model changes in antimicrobial susceptibility of bacteria isolated from various stages in the 

animal-derived food production system (e.g., farm, slaughter, retail) 

Genotypic Resistance in Bacteria in the Animal-Derived Food Supply:  identifies methods to 

model changes in genotypic patterns associated with antimicrobial susceptibility of bacteria 

isolated from various stages in the animal-derived food production system (e.g., farm, slaughter, 

retail) 

Systems:  identifies methods and considerations for system assumptions, system to be modeled, 

data requirements, model [result] integration, system boundaries, uncertainties associated with 

models/model levels/data availability, information needed, and the overall model framework 

We discuss how they work together to create an analytic framework that addresses the question, ending 

with identification of specific next steps that are necessary to develop this framework more fully in order 

to assess the efficacy of interventions on AMU and AMR in FA. 

2 Antimicrobial Drug Use in Food Animals  

2.1 How the Population Structure of Food Animals Affects the Use of Antimicrobial Drugs 

Population structure dynamics of FA include the rise or fall in numbers of farms and animals of individual 

species, production classes within species (e.g., breeder, finisher), and types of production to raise the 

animals (e.g., organic, conventional, intensive). Changes in animal demographics and population structure 

occur at varying spatial and time scales in response to consumer demand, market and other forces. These 

changes affect population-level need for and quantities of specific antimicrobials used via specific 

administration routes and treatment schedules. This is because the population structure determines the 

categories and numbers of animals experiencing specific health conditions which can necessitate AMU 

(e.g., animals of a given species, category and age in a given production type, location and season have a 

specific infectious disease incidence). The drug arsenal per label and extra-label use allowance, and AMU 

practices by veterinarians and producers, are also specific to animal species, category, age, and type of 
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production. Also, demographic changes lead to shifting age, weight and body composition of animals 

administered antimicrobials, influencing the pharmacokinetics (PK) of the drugs within the animals. 

2.2 Factors Influencing the Need for Antimicrobial Drug Use in Food Animals  

The need for AMU in FA depends on the incidence of animal health conditions necessitating AMU for 

disease prevention, control, therapy, or improving production efficacy. Disease detection, risk perception, 

responsiveness to provide antimicrobials by animal caregivers, and availability of alternatives to 

antimicrobials are also important. Factors influencing incidence of health conditions include animal 

husbandry, available technologies and biologicals (e.g., vaccines), animal production biosecurity, and 

epidemiology and evolution of animal pathogens. Factors influencing disease observation in FA and 

responsiveness to provide treatment include managerial practices for observing animal health, access to 

veterinary care, perception and judgement of the health risks which may necessitate AMU, and 

responsiveness to provide antimicrobials given need. Given a decision to treat, a choice can be made 

between an antimicrobial drug or its alternative upon availability of the latter. 

2.3 Factors Influencing the Arsenal and Use Practices of Antimicrobial Drugs in Food Animals  

The arsenal of antimicrobial drugs available for a given animal species, category, and age, in a given type 

of production, is determined by the per label and extra-label use allowances, i.e., by regulation and 

approval of antimicrobials for animals. For example, no antimicrobials should be used from the second 

day after hatching on farm during rearing of broiler chickens grown organically, but some can be used in 

broilers grown conventionally. Another example is that the FDA’s Veterinary Feed Directive (21 CFR 

Section 558.6) regulates which antimicrobials can be administered in feed to address a health condition 

in a FA category. Given the arsenal, AMU practices are choices made by veterinarians or producers 

regarding antimicrobial classes and individual drugs, administration routes, and treatment schedules to 

address specific health conditions. Practicality of administration, production economics, and food safety 

regulations (e.g., the required drug withdrawal periods) affect the practices. Certain antimicrobials or 

administration routes are thus used more intensively in some species, categories or types of production. 

Beef cattle, for example, are more often treated with antimicrobials by injections than are broiler chickens 

due to practicality and production economics. Antimicrobial choices for broiler breeders can include drugs 

with a longer withdrawal period because of the birds’ longer lifespan compared to drugs for grow-out 

broilers.  

In addition to the arsenal available and practicality of administration to the animal species, category, age, 

and production type, in a case of disease occurrence and need for treatment, further factors influence the 

choice of antimicrobial drugs and treatment schedules by veterinarians or producers. These include: 

education, current professional information, and experience; knowledge of the health condition or the 

disease-causing pathogen occurrence within the farm or area; perceived efficacy of the antimicrobial or 

schedule given expectation or knowledge of the AMR epidemiology in the pathogen; apparent disease 

incidence (that can affect the decision to treat individual animals vs. administer the antimicrobial 

metaphylactically to the entire animal group); response to the drug manufacturer’s behavior (e.g., price 
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insensitivity affecting the veterinarian’s profit from drug sales); veterinarian-client-patient relationship 

and veterinarian-client expectations; and response to wider social pressures. 

2.4 Indices of Antimicrobial Drug Use in Food Animals on Farms 

Various indices describe AMU at animal-level on farms in both research settings and national surveillance 

programs (Berge et al., 2006; Callens et al., 2012; Carson et al., 2008; Chauvin et al., 2005; Dunlop et al., 

1998; Grave et al., 2006; Jensen et al., 2004; Merle et al., 2014; Moon et al., 2011; Postma et al., 2015; 

Stevens et al., 2016; Timmerman et al., 2006; Vieira et al., 2011); see also reports of AMU monitoring 

systems listed below (e.g., CIPARS, 2012; DANMAP, 2014; MARAN, 2014; SVARM, 2014). Common indices 

are summarized in Table 1; different terms may refer to the same index, so we include the index definition. 

Other indices (not in Table 1) apply to specific antimicrobial uses, e.g., number of intra-mammary doses 

or the treated disease case rate in the population. Individual or a combination of the indices in Table 1 

can describe AMU in a FA category for a farm, area, or at the national level when frequencies and amounts 

of different antimicrobials used are known. In the absence of such knowledge, some nations use an 

alternative approach to describe a drug’s use in a FA category based on its main indication for the 

category. The drug’s per label dosage and duration for this indication are used to derive Animal Defined 

Daily Dose (ADDD) and Animal Used Daily Dose (UDDD) indices (Table 1). These are used in combination 

with data on the total drug amounts used or sold, and characteristics of the population (number of animals 

and their weight), to approximate the intensity of the drug use, e.g., to estimate nADDD or Antimicrobial 

Drug Use Rate (ADUR) indices (Table 1). Knowledge of the production system can help judge how often 

during the animal production life-span this is applied.  

Few national surveillance systems collect data on actual AMU or sales of antimicrobials intended for use 

in individual FA species. Those that do include systems in Denmark (DANMAP), Sweden (SVARM), 

Netherlands (MARAN), France (ANSES), and Canada (CIPARS). Species-specific data have been collected 

via different approaches; in the EU, approaches have included collecting data on farms, from 

veterinarians, and from pharmacies. Other countries collect only data on total sales of antimicrobials for 

veterinary use, e.g., Finland (EVIRA) and Ireland (HPRA). The European Surveillance of Veterinary 

Antimicrobial Consumption (ESVAC) annually collates available AMU data for 26 countries of the EU and 

European Economic Area. Indices to approximate AMU based on the total sales data have been proposed, 

e.g., an index of Animal Level of Exposure to Antimicrobials (ALEA) for a FA species is estimated by dividing 

the body weight of animals treated (function of the ADDD and duration of treatment) by the animal mass 

that could potentially be treated by the antimicrobial drug, with the former approximated based on the 

sales data (ANSES). Research is underway to develop methods to stratify the total veterinary antimicrobial 

sales by animal species, utilizing supportive farm-level AMU data and different modeling approaches such 

as re-partitioning the sales data based on the animal body mass and known veterinary prescription 

patterns (Carmo et al., 2015). The US currently collects data on total antimicrobial drug sales for animals5; 

                                                           
5 FDA receives data for each antimicrobial product, but can only report summary data by class if there are 3 or 

more sponsors.  Classes with fewer than 3 sponsors are grouped together in a category “not independently 

reported”. 
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the data are reported by the FDA Center for Veterinary Medicine (FDA CVM 2015). Data on estimated 

antimicrobial drug sales for individual FA species will be collected by the FDA starting in 2016 and reported 

in 2017. 

Table 1. Indices that have been used to describe AMU at the level of animals on farms. 

Index Definition 

ADDD, Animal Defined Daily 

Dose 

Per label dose for main drug indication in the animal category, 

amount active drug ingredient per day per kg animal weight(a) (Also 

called DDDvet) 

PDDD, Animal Prescribed Daily 

Dose 

Similar to ADDD but instead includes the dose prescribed; the ratio 

PDDD/ADDD reflects prescribing behavior 

UDDD, Animal Used Daily 

Dose 

Similar to ADDD but instead includes the dose actually used 

UCD, Used Course Dose  Amount of active drug ingredient used in the treatment schedule 

per kg animal weight 

TIxDDD, Treatment Incidence 

per 1000 animal-head 

Amount active drug ingredient used/(xDDD(b)*days at risk*kg 

animal weight)*1000. Relative usage can then be approximated as 

TI drug or drug class/TI all antimicrobials. 

nADDD Number of ADDDs in the animal population. Amount of active drug 

ingredient used in the animals/(ADDD*average animal weight)  

ADUR, Antimicrobial Drug Use 

Rate 

Number of xDDD per 1000 animal-days at risk (e.g., animal-days on 

the farm or in the production system)  

Treatment frequency Number of treatments in individual animals per 1000 animal-days 

at risk  

AER, Antimicrobial Exposure 

Rate 

Number of animals treated*days treated/total number of 

animals*total days (e.g., in the production cycle) 

Level of antimicrobial 

exposure 

Amount of active drug ingredient per 1000 animal-days at risk 

Proportion exposed Proportion of animals treated; proportion of farms that have used 

the antimicrobial 

a The indices listed have been standardized as the active drug ingredient amount per kg animal meat, kg 

animal live weight, or Population Correction Unit (PCU). The PCU is defined as kg live or slaughtered animal 
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weight for the animal category, estimated as the number of live or slaughtered animals*standard or 

average animal weight at most likely time of the antimicrobial administration (European Medicines 

Agency ESVAC 2015). b xDDD – either ADDD or PDDD or UDDD 

 

2.5 Relationships between Antimicrobial Drug Use in Food Animals and Antimicrobial Exposure of 

Enteric Bacteria within the Animals  

In FA administered antimicrobials, enteric bacteria are exposed to concentrations of drugs or their 

antimicrobially active metabolites that are excreted or passed with the digesta to the intestine. 

Antimicrobials vary in their metabolism and excretion to the intestine, and in processes the drugs/active 

metabolites undergo in the intestine (e.g., degradation). Thus, the fraction of administered drug that is in 

the intestine in active form varies by drug, and relates non-linearly to the quantity at the animal level. This 

may explain the above-mentioned variability in associations of AMU with resistance in foodborne 

pathogens in studies that utilized animal-level AMU estimates. Relationships between AMU at the animal 

level and resulting antimicrobial exposure of the enteric bacteria within the animals can be determined 

using population PK-for-intestine models, which project the drug/active metabolite concentrations in the 

animals’ intestines for different treatment schedules. Until recently, PK studies of antimicrobials focused 

on the drug concentrations in animals’ central circulation to forecast effects against disease-causing 

pathogens, and in certain tissues to forecast the residues to ensure toxicological food safety. Those 

models and data will assist in developing PK-for-intestine models, but additional modeling and data are 

needed on processes antimicrobials undergo while transiting through the intestine. In FA populations, the 

antimicrobial’s PK-for-intestine, and thus variation in intestinal antimicrobial concentrations, depend on 

the drug, its formulation, administration route, animal species and category, age and body composition, 

and disease pathophysiology (Brown et al., 1996; Gorden et al., 2016; Green and Duffull, 2004; Huang et 

al., 2015; Kissell et al., 2015; Lees and Shojaee Aliabadi, 2002; Rule et al., 1996; Sarwari and Mackowiak, 

1996; Toutain et al., 2010; Volkova et al., 2016; Winter et al., 2010). Concurrent production practices may 

influence antimicrobial exposure (e.g., secondary exposure to drugs excreted to the environment (Call et 

al., 2013). PK-for-intestine models exist for cattle for the cephalosporin ceftiofur administered 

parenterally (Volkova et al., 2012) and chlortetracycline administered per os (Cazer et al., 2014). Foster et 

al. (2016) have reported experimental in vivo estimates of intestinal concentrations of ceftiofur and the 

fluoroquinolone enrofloxacin in cattle treated parenterally. Combinations of such modeling and 

experimental studies can fill the knowledge gap on relationships between animal-level AMU and 

antimicrobial exposure of enteric bacteria within animals. 
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Figure 7. Pharmacokinetic/Pharmacodynamic (PK/PD) Models. Currently, antimicrobial use (AMU) is 

surveyed by the US National Animal Health Monitoring System at farm and food animal (FA) levels as point 

estimates. Pharmacokinetic (PK-for-intestine) models can be used at animal and population levels to 

extrapolate to the animals’ intestines, to estimate antimicrobial exposure of enteric bacteria within 

treated animals due to AMU in the animals. Pharmacodynamic models can then be used to estimate 

effects from antimicrobial exposure on enteric bacteria and their AMR. Outputs that can be derived from 

PK/PD modeling are changes in AMR at the bacteria, individual animal, and animal population levels. 

The effects on animal enteric bacteria from exposure to antimicrobial drugs or their active metabolites 

reaching the intestine can be studied using pharmacodynamics (PD) models. Until now, PD studies of 

antimicrobials have focused on the effects against the pathogens treated. This is often done using in vitro 

experiments with pure cultures of standardized densities of the pathogen isolates highly susceptible to 

the drug, with high bacterial population growth rates (Garcia, 2010); the predictions are validated in vivo 

through clinical efficacy of the treatments so designed. The approach is not applicable for PD modeling 

for animal enteric bacteria as these exist in the intestine in variable densities; are composed of sub-

populations with variable antimicrobial susceptibilities; and are restricted in their growth due to nutrient 

and aeration conditions, and by other enteric microbiome components. Bacterial densities, population 

growth rates, and susceptibilities influence the PD of antimicrobials (Ahmad et al., 2015; Gehring and 

Riviere, 2013; Udekwu et al., 2009; Volkova et al., 2012). Further, feedback between antimicrobial 

exposure and susceptibility of the bacterial population is poorly understood (Hanberger, 1992; Jacobs et 

al., 1997; Levin et al., 2014; Livermore, 1987; Zeng and Lin, 2013). Bacterial susceptibility and 

drug/metabolite antimicrobial activity are also affected by intestinal pH or aeration conditions (Cid et al., 

1994; DeMars et al., 2016; Schlessinger, 1988). Thus, capturing the effects of antimicrobials reaching the 

intestine on enteric bacteria will require new, significantly more complex PD models than those that have 

been used to predict the drugs’ effects against the pathogens treated. 
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Accounting for relationships between AMU at the animal level and resulting antimicrobial exposure of the 

enteric bacteria within the animals (PK-for-intestine models), and the effects of that exposure on the 

bacteria (PD models for enteric bacteria), can provide the link for evaluating impact of AMU practices for 

different antimicrobials in FA on AMR in foodborne pathogens. Figure 7 depicts the levels at which data 

are required for operation of these models, where the data exist, where the models operate, and at what 

level the modeling results can answer the AMR question posed in the introduction. 

 

2.6 Example – Exploratory work 

We present an example of estimating population-level antimicrobial exposure of enteric bacteria in a FA 

category by combining estimates of AMU in the animals with the PK-for-intestine modeling for the drug. 

We also use the example to show the limitations (and differences in results) of the indices used to describe 

the AMU at the animal level that are standardized by animal body weight (BW) (listed in Table 1). The 

example is based on beef feedlot cattle and ceftiofur use for prevention or control of shipping fever. To 

approximate AMU at the animal level, we use data from a survey of beef feedlots with animal-head 

capacity >1000 conducted by NAHMS in 2011 in 12 US continental states (USDA APHIS NAHMS, 2011a,b,c). 

Such large feedlots housed 82% of the US beef cattle inventory in 2011, according to National Agricultural 

Statistics Service (NASS) data. Of those cattle, 95% lived in the 12 states surveyed. Hence, the cattle 

population surveyed included roughly 78% of the national inventory. Approximately 60% of cattle in this 

population were on feedlots with <8000 headage, and 40% on feedlots with ≥8000 headage. Roughly half 

of the cattle put on feed in 2011 had an initial BW below and the other half above 700 lb (318 kg); we 

assumed this was similar for feedlots with headage below and equal to or above 8000. For these 4 animal 

categories the survey reported the frequency of health conditions necessitating AMU, and frequency of 

specific drug choices by purpose. For illustrative purposes for the example, we consider a random sample 

of 1 million cattle from this population maintained on feed for a 6-month production cycle. 

Estimated proportions of the cattle treated by an injectable antimicrobial drug for prevention or control 

of shipping fever were: 27% of animals placed on feed with a BW<700 lb on feedlots with headage <8000; 

4% of animals at BW ≥700 lb on feedlots with headage <8000; 41% of animals at BW<700 lb on feedlots 

with headage ≥8000; and 5% of animals at BW≥700 lb on feedlots with headage ≥8000. The third 

generation cephalosporin ceftiofur was the drug of choice for the estimated 26% of the cattle treated on 

feedlots with headage <8000; and for 13% of the cattle treated on feedlots with headage ≥8000; we 

assumed this was similar for cattle with BW below and above 700 lb at placement. We assumed an animal 

received one complete treatment schedule of ceftiofur by injection for this purpose during the 6 months 

on feed, following per label daily dosage 2.2 mg/kg cattle BW, with a 5-day treatment schedule. A 

sustained-release ceftiofur formulation is also used for this purpose; we consider the 5-day treatment by 

a non sustained-release formulation for the purpose of the example. 

We consider that a 650 lb (295 kg) BW steer and an 850 lb (386 kg) BW steer receive the 5-day ceftiofur 

treatment schedule. We consider an average or standard animal in the feedlot system weighed 800 lb 

(363 kg). We first describe the drug’s use at the animal level using the indices in Table 1; we standardize 
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the indices by kg of animal live BW at the time of antimicrobial administration. The standard ADDD of 

ceftiofur for either animal was 2.2 mg/day/kg BW, and the standard Used Course Dose (UCD) over the 5-

day schedule was 11 mg/kg BW. We next derive the antimicrobial exposure at the per-head level due to 

ceftiofur use, given the animal BW (Table 2).  

Table 2. Use of ceftiofur for shipping fever control in US beef feedlot cattle by injection. Estimates of 

animal-level use indices standardized per kg of live animal body weight (BW), or based on total active 

ingredient quantities used, assuming the treatment schedule was once daily for 5 days in the dosage of 

2.2 mg/day/kg animal BW. 

Animal BW at 

treatment 

ADDDa UCDb Total active drug 

ingredient daily 

Total active drug 

ingredient over the 

5-day schedule 

Average animal, 

800 lb (363 kg) 

2.2 mg/day/kg BW 11 mg/kg BW 799 mg/day 3,993 mg 

650 lb (295 kg) 2.2 mg/day/kg BW 11 mg/kg BW 649 mg/day 3,245 mg 

850 lb (386 kg) 2.2 mg/day/kg BW 11 mg/kg BW 850 mg/day 4,246 mg 

aAnimal Defined Daily Dose. bUsed Course Dose 

The estimates presented in Table 2 show that AMU indices standardized per kg of BW (listed in Table 1) 

do not reflect differences in the antimicrobial exposure at the animal level arising from the differences in 

the animal BW at the time of drug administration. 

 

Given the distribution of cattle with BW above and below 700 lb at placement in feedlots with below and 

equal to or above 8000 headage estimated in the survey, and assumptions listed above, we estimate 

ADUR, Antimicrobial Exposure Rate (AER), and proportion exposed for an entire random sample of 1 

million cattle on feed in the population for 6 months vs. the categories put on feed at BW less than and 

greater than 700 lb across the feedlots of different sizes (Table 3). Taking a simplified assumption for 

illustration that at the time of ceftiofur treatment, all cattle placed on feed at BW<700 lb weighed 650 lb, 

and all cattle placed on feed at BW>700 lb weighed 850 lb, we can further estimate the index “level of 

antimicrobial exposure” that is based on the antimicrobial quantities per head (Table 3). 
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Table 3. Use of ceftiofur for shipping fever control in US beef feedlot cattle by injection. Estimates of 

population-level use indices standardized per kg of live animal body weight (BW), or based on total active 

ingredient quantities used. Based on the USDA APHIS NAHMS Beef Survey 2011 data, and assuming the 

treatment schedule was once daily for 5 days at 2.2 mg/day/kg animal BW. 

Cattle placed on feed at 

BW 

Proportion of 

animals exposed 

ADURa AERb Level of antimicrobial 

exposure (active drug 

ingredient per 1000 

animal-days at risk) 

Total random sample of 1 

million cattle, at any BW 

3.6% 0.99 0.0010 791 mg 

Those at BW<700 lb 6.3% 1.74 0.0017 1128 mg 

Those at BW>700 lb 0.9% 0.24 0.0002 206 mg 

aAntimicrobial Drug Use Rate. bAntimicrobial Exposure Rate 

We next consider exposure of enteric bacteria within treated cattle to antimicrobially active ceftiofur 

metabolites. Ceftiofur is rapidly metabolized in the animal body; a large fraction of the metabolites retains 

antimicrobial activity (Hornish and Kotarski, 2002; Ritter et al., 1996; Salmon et al., 1996). Based on 

experimental data and a published model of ceftiofur PK-for-intestine (Beconi-Barker et al., 1996; Volkova 

et al., 2012), we assume roughly 25-35% of the active ingredient administered daily to beef cattle can 

reach the animal intestine in the form of the drug’s active metabolites. The metabolites likely undergo 

biotic degradation by enzymes produced by enteric bacteria (Gilbertson et al., 1990; Hornish and Kotarski, 

2002). We assume degradation occurred for 6 hours before the metabolites reach the lower intestine, 

and use a published estimate of the degradation rate (Volkova et al., 2012). Under these assumptions, 

Table 4 presents the projected quantities of antimicrobially active ceftiofur metabolites to which enteric 

bacteria in the cattle lower intestine could be exposed on each of the 5 treatment days. These were 49-

68 mg in a 650 lb steer, and 64-89 mg in an 850 lb steer. Further, we use a published allometric model to 

approximate the volume of cattle large intestine based on BW (Cazer et al., 2014). Given the metabolite 

quantities reaching the intestine, the degradation they undergo, and intestinal volume, projected 

concentrations of active ceftiofur metabolites in the large intestine can reach 1.7-2.4 μg/mL in either a 

650 lb or 850 lb steer in the first hours post-injection (each of the 5 daily injections) (Table 4). These 

estimates compare well with experimental data (Foster et al., 2016). Thus, even though the metabolite 

quantities reaching the intestine may be higher in an animal with larger BW, because of also larger 

intestinal volume in the animal, the antimicrobial concentration to which enteric bacteria are exposed 

may be similar to that in a smaller animal treated under the same schedule. This is not captured by the 

estimates of AMU based on total quantities of the active drug ingredient administered (Table 2). 
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Table 4. Use of ceftiofur for shipping fever control in US beef feedlot cattle by injection. Estimates of 

animal-level quantities and concentrations of antimicrobially active drug metabolites to which bacteria of 

the lower intestine are exposed, assuming the treatment schedule was once daily for 5 days in the dosage 

of 2.2 mg/day/kg animal body weight (BW). 

Animal 

body 

weight 

ADDDa UCDb Total 

amount of 

active drug 

ingredient 

administer

ed daily 

Total 

amount of 

active drug 

ingredient 

administered 

over the 5-

day schedule 

Projected quantity 

of antimicrobially 

active drug 

metabolites 

reaching the 

animal’s lower 

intestine daily 

Projected maximum 

concentration of 

antimicrobially 

active drug 

metabolites in the 

large intestine post-

injection 

Average 

animal, 

800 lb 

(363 kg) 

2.2 

mg/da

y/kg 

BW 

11 

mg/k

g BW 

799 

mg/day 

3993 mg 60-84 mg 1.7-2.4 μg/mL 

650 lb 

(295 kg) 

2.2 

mg/da

y/kg 

BW 

11 

mg/k

g BW 

649 

mg/day 

3245 mg 49-68 mg 1.7-2.4 μg/mL 

850 lb 

(386 kg) 

2.2 

mg/da

y/kg 

BW 

11 

mg/k

g BW 

850 

mg/day 

4246 mg 64-89 mg 1.7-2.4 μg/mL  

aAnimal Defined Daily Dose. bUsed Course Dose 

Table 5 gives examples of 3 hypothetical population-level indices of antimicrobial exposure of enteric 

bacteria within animals due to AMU in the FA category (population of interest), for the example of 

ceftiofur use for shipping fever control in beef cattle. The first index is the projected quantity of the 

drug/its active metabolites reaching the animal lower intestines, standardized per 1,000 animal-days. In 

the example, it is estimated by summing the quantities of active ceftiofur metabolites reaching the lower 

intestines during the 5-day schedule in all animals administered, standardized per 1000 total animal-days 

during the 6 month production cycle. Yet, as shown above, antimicrobial concentrations in the lower 

intestine may be similar in animals in which the antimicrobial quantities reaching the intestine are 

different (because of the allometric relationships between animal body size and intestinal volume). 

 

A concept of an antimicrobial’s No Observable Effect Level (NOEL) has been proposed (Carman et al., 

2005; FDA-CVM, 2004, 2012; Perrin-Guyomard et al., 2001). We conjecture that the NOEL may be defined 

as the maximum antimicrobial concentration in animal intestines in the FA category at which there are 
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still no observable (measurable by currently available methods) effects on the enteric microbiome’s 

structure, or, instead, on the microbiome’s resistome. The NOEL may also be defined for a specific enteric 

bacterial species, as the maximum antimicrobial concentration in animal intestines in the FA category, at 

which there are still no observable effects on AMR in that bacteria species. Using antimicrobial 

concentrations in the lower intestines and NOEL, we derive 2 more hypothetical population-level indices 

of selective exposure on enteric bacteria within animals in the FA category:  

(1) Duration of selective pressure: Total hours the antimicrobial’s concentrations in the lower intestines 

of treated animals in the FA category exceeded the antimicrobial’s NOEL, standardized by total animal-

hours.  

(2) Frequency of selective pressure: Total number of days the antimicrobial’s concentrations in the lower 

intestines in treated animals in the FA category exceeded the antimicrobial’s NOEL, standardized by total 

animal-days.  

 

Table 5. Use of ceftiofur for shipping fever control in US beef feedlot cattle by injection. Estimates of 

hypothetical population-level indices reflecting the quantities and concentrations of the antimicrobially 

active drug metabolites to which bacteria of the lower intestines within cattle are exposed. Based on the 

USDA APHIS NAHMS Beef Survey 2011 data, and assuming the treatment schedule was once daily for 5 

days in the dosage of 2.2 mg/day/kg animal body weight (BW). 

Cattle placed on feed at BW Hypothetical index, 

quantity of antimicrobially 

active drug metabolites 

reaching animals’ lower 

intestines, per 1000 

animal-days at risk 

Hypothetical index, 

duration in hours of 

selective pressure 

on enteric bacteria, 

per 100,000 animal-

hours at risk 

Hypothetical index, 

frequency of animal-

days of selective 

pressure on enteric 

bacteria, per 1000 

animal-days at risk 

Total random sample of 1 

million cattle, at any BW. 

Assuming each treated 

animal was of average BW. 

59-83 mg 74 hours 0.99 

Those at BW<700 lb 85-118 mg 130 hours 1.74 

Those at BW>700 lb 16-22 mg 18 hours 0.24 

 

For the example, we define the NOELresistome as the concentration of antimicrobially active ceftiofur 

metabolites in the lower intestines of beef cattle of feedlot age at which there are still no detectable 

changes in the enteric microbiome’s resistome by current methods. To illustrate, we hypothetically 

assume the NOELresistome to be 0.05 μg/mL. Given the above-described metabolite concentrations in the 

lower intestines projected by a published model of ceftiofur PK-for-intestine (Volkova et al., 2012) and 

experimental data (Foster et al., 2016), we assume the concentrations exceed the hypothetical 



25 

 

NOELresistome for 18 hours each day of the 5-day schedule in either a 650 or 800-850 lb steer. With these 

assumptions, we derive:  

(1) Duration of selective pressure: Total hours the concentrations of antimicrobially active ceftiofur 

metabolites in the lower intestines of all cattle that received the 5-day ceftiofur schedule for shipping 

fever control exceeded the NOELresistome per 100,000 total animal-hours in the 6-month production cycle. 

The estimates are given in Table 5. 

(2) Frequency of selective pressure: Total number of days in all cattle that received the 5-day ceftiofur 

schedule for shipping fever control when the concentrations of antimicrobially active ceftiofur 

metabolites in the lower intestines exceeded the NOELresistome per 1,000 total animal-days in the 6-month 

production cycle. The estimates are given in Table 5. 

This example demonstrates a need for further development of methods for informative estimation and 

assessment of AMU in FA at the population, animal, and within-animal levels, to determine selection 

pressure imposed. At animal level, standardizing AMU indices per kg of animal BW may mask AMU 

differences at head level in species experiencing extensive growth in BW during the production life-span. 

Development of the above methods will allow determining the antimicrobial concentrations to which 

enteric bacteria within animals are exposed, and associated impacts on AMR in foodborne pathogens (i.e., 

PK-PD models). This information can then be used to evaluate effects of changes in AMU (doses, regimens, 

routes of administration) on AMR. As discussed above, AMU changes can occur due to regulatory or other, 

e.g. industry-led or societal, initiatives. This type of model at a finite scale can thus infer selection pressure 

changes on foodborne pathogens arising due to changes in AMU practices in FA. 

  

3 Phenotypic Antimicrobial Resistance in the Food Supply – Exploratory Work 

3.1 Introduction 

NARMS tests antimicrobial susceptibility of human clinical isolates of enteric pathogens and bacteria in 

retail meats and FA. The NARMS public-release isolate-level data contain susceptibility test results for 

each isolate (105,922 isolates in total) from samples collected at slaughter and in participating states, at 

the retail level (Table 6). NARMS reports minimum inhibitory concentration (MICs) for a panel of 

antimicrobial drugs tested for each isolate. The MIC is usually measured by a broth microdilution method: 

an isolate’s growth is evaluated when exposed to successive twofold dilutions of antimicrobials. The test 

outcome, the MIC, is the lowest concentration with no visible growth after a specific time period, so the 

MIC for each bacteria-antimicrobial combination is a discrete variable. To aid interpretation of the 

susceptibility tests, MICs are often categorized into 3 classes (susceptible, intermediate, and resistant) 

using breakpoints.  

Surveillance data collected before implementation of the FDA’s interventions provide a baseline to 

compare changes in resistance outcomes. Changes in AMR levels after the policy implementation might 

be linked to the policy. 
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Table 6. Animal and bacterial species data available in the NARMS dataset 

Stage  Animal 
species 

Bacterial species and sampling years  

Slaughter 
(non-cecal) 

Chicken Salmonella (1997-2013), E. coli (2000-2013), Campylobacter (mid-
2001-2013)*, Enterococcus (2003-2011) 

Turkey 

Salmonella (1997-2013) Cattle 

Swine 

Slaughter 
(cecal)  

Chicken 

Salmonella, E. coli, Campylobacter and Enterococcus (2013) 
 

Turkey 

Cattle 

Swine 

Retail Chicken 
Parts 

Salmonella, E. coli, Campylobacter, and Enterococcus (2002-2013) 
Ground 
turkey 

Ground 
beef Salmonella, E. coli, Enterococcus (2002-2013), Campylobacter (2002-

2007) Pork 
chops 

*Isolation of Campylobacter from chicken at slaughter began in 1998, but nalidixic acid susceptibility 

and cephalothin resistance were used by the USDA as identification criteria for Campylobacter jejuni/coli 

until mid-2001, which likely resulted in underreporting of quinolone-resistant Campylobacter during this 

time period.  

Trends in AMR phenotypic changes observed through NARMS are often analyzed and summarized using 

univariate approaches such as the percentage of non-susceptible isolates to drugs of interest in bacteria 

species for which resistance is of great concern. Clinically, this is an important and useful parameter to 

help guide therapy, but it is less informative for monitoring effects of mitigation strategies on resistance 

for several reasons, including (1) changes in MIC distribution that do not occur near the breakpoints may 

go undetected; (2) the background prevalence of resistance is high for some combinations of 

antimicrobials and bacteria species, making detection of changes due to mitigation strategies difficult, as 

stochastic variation may be large; and (3) for Salmonella specifically these percentages are highly 

influenced by serotype composition of the sample. Metrics identifying shifts in resistance should be 

refined; common ones such as percentage resistant based on breakpoints are not the most sensitive ones 

to evaluate resistance trends. The MIC values themselves may be a better choice than categorizing MIC 

as susceptible or non-susceptible. Also, NARMS data are multivariate. Each isolate has an MIC value for 

each antimicrobial drug in the panel. The number of antimicrobials included in a given panel varies by 

bacteria and year and ranges from 9-16 drugs. Covariance between MIC values is likely to be positive for 

some drug-bacteria combinations. Some drugs share biochemical mechanisms that confer resistance. 

Other drugs can be positively correlated if genetic linkage exists between their genes. Frequency of 
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multidrug resistance thus exceeds what would be expected by chance. Methods that expand beyond 

univariate approaches are needed to understand relationships among antimicrobials.  

Resistance patterns have been analyzed using multivariate methods, e.g., principal component analysis 

or factor analysis (Wagner et al., 2003). These have been used to reduce the measured variables into 

fewer components that capture data variability. The main limitation of multivariate approaches that 

perform dimension reduction is the difficulty in interpreting the meaning of the created variables. 

Principal components are easier to interpret when clear separation of antimicrobial drugs exists among 

principal components, e.g., if each principal component represents a drug class (Poupard et al., 2002). 

Graphical modeling can represent the multivariate relationships that exist within MIC data without 

performing dimension reduction. Markov networks, a form of undirected graphical models, can be used 

to represent variables in a set of data, where the variables are the vertices and the correlations between 

variables are represented by edges connecting the vertices (Taskar and Getoor, 2007). In applying 

graphical models to NARMS data, a vertex represents each drug resistance and edges joining drugs 

indicate drugs that are not conditionally independent. The most common types of graphical models are 

Bayesian networks and Markov networks. 

Our exploratory work has two phases. The first focuses on baseline variation of individual drugs and the 

second on patterns of co-occurrence of resistance for multiple drugs. 

 

The aim of the first stage was to study baseline AMR and how the information gained can be used to 

assess changes in policy. To do this, we studied historical NARMS data (2004-2012), looking at various 

microbe, host, and antimicrobial drug combinations. Having gained an understanding of the variation in 

these data, we wanted to know how much data should be collected to find a statistically significant 

difference in resistance, before and after policy change. Our objectives were to 1) evaluate the baseline 

trend and variations in the NARMS data, 2) examine the structure of the variation in resistance 

within/between years, and across geographic regions, and 3) using this baseline, estimate how much data 

must be collected to determine if the change in FDA policy had an effect.  

 

The aim of the second phase was to develop methods to describe patterns in multidrug (> 1) resistance 

(MDR) and how these patterns change over time. Our objectives were to 1) estimate the Markov networks 

describing AMR relationships using the graphical least absolute shrinkage and selection operator (lasso), 

2) apply log-linear models of contingency tables to infer more complex multi-drug relationships and 3) 

understand how these patterns have changed across time.  

3.2 Materials and Methods 

Phase 1: 

To gain a basic understanding of AMR changes over time and across slaughter and retail in the food supply 

chain, we explored resistance data for each microbe/host/antimicrobial drug combination (Zawack et al., 

2016). We examined many combinations of microbes, hosts and antimicrobials; we focus here on chicken 
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as the host and resistance of Campylobacter jejuni to tetracycline, C. coli to erythromycin, Salmonella 

Typhimurium to ampicillin, and E. coli to streptomycin. Chicken had the most consistent data across all 

time points and stages. Analyzed drugs were chosen for their significance in both human and veterinary 

medicine and extent of use in food production (FDA, 2003). Bacteria were chosen for their significance as 

pathogens, number of observations, and MIC distribution patterns. The time frame of 2004 to 2012 was 

chosen because both slaughter and retail data for chicken were available then.  

To assess AMR trends, we built models of resistance with AMR as a binary variable in logistic regression 

and as a censored  continuous variable in linear regression, using log2 (MIC). Where isolates had resistance 

to a drug in excess of the highest tested concentration, the log2(MIC) was assigned log2(MICmax) + 1 to 

indicate that this resistance was greater than those with MICs equal to the highest tested concentration.  

To assess sources of variation we used a linear mixed effects model. Coefficient significance was assessed 

by a likelihood ratio test. 

We used logistic regression to model the log odds of resistance versus non-resistance as a function of 

slaughter/retail and year. To assess robustness as to choice of breakpoint, we ran regression at different 

breakpoints to evaluate similarity of the resulting coefficients, with C. coli-Erythromycin as an example. 

To sidestep breakpoint choice, and add another view on AMR, we treated MIC as continuous and mean 

log2 MIC was modeled as a linear function of stage and year.  

To study the sources of variation in resistance, log2 MIC was modeled as a function of a fixed intercept for 

state and a random intercept for year, in a linear fixed effects model.  

To evaluate the effectiveness of the FDA policy change in line with our analyses, we propose a model with 

a constant base level of resistance around which yearly levels vary, a period of change, and then a new 

resistance level is established (Figure 8). 

A hypothesis test of mean resistance level before and after policy change can assess change in resistance. 

Different variation within and between years is assumed so the test is carried out on mean yearly 

resistance. This test can be done with either percent resistance or MIC values. Power analysis was 

performed to benchmark the test’s efficacy. Calculating power requires knowledge of standard deviation 

(SD), sample size, and magnitude of the effect to be detected. For the t-test of mean log2 MIC, SDs were 

chosen by calculating the empirical distribution for the SD of the mean log2 MIC per year. Number of 

isolates per year was assumed to be 200, a number generally exceeded in historical data. The current 9 

years of data were used as pre-policy change sample size. Post-policy change, sample sizes were assumed 

to be between 1 and 10 years. The desired detectable effect was taken to be between 0 and 1 log2 MIC. 

Power curves were drawn. 
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Figure 8. The model of antimicrobial resistance used in evaluating policy changes. It is assumed there is a 

constant base level of resistance around which the yearly levels vary, a period of change, and then a new 

resistance level is established. 

Resistant/Susceptible counts are binomial quantities so their SDs are functions of proportions. Data are 

from a mix of conditions like geographical location, season, and production quality, so the proportions are 

over-dispersed with respect to binomial variation; the SD will also be a function of this over-dispersion 

parameter. Plotting the empirical distribution of each quantity yielded reasonable proportions and over-

dispersion parameters. Isolates per year was set to 200, pre-policy change sample size was 9 years, post 

change sample size was between 1 and 10 years, and effect sizes were chosen to be detectable with such 

sample sizes. Power curves were plotted.  

Role of isolate count was determined by calculating power as above, but replacing the single SD parameter 

with a combined SD for between and within year. The resulting power was plotted for isolate count 

between 1 and 2000 assuming 𝑠𝑑𝑏𝑒𝑡𝑤𝑒𝑒𝑛 was 0.6, 𝑠𝑑𝑤𝑖𝑡ℎ𝑖𝑛 was 3, the pre-policy change sample size was 

9 years, post-change sample size was 5, and effect size was a 1 fold change in MIC. In assessing power, 0.8 

was chosen as the desirable threshold. 

Phase 2: 

To study collateral resistance patterns we took as our data set the resistance measurements for all drugs 

against E. coli from chickens at both slaughter and retail. 

Collateral resistance is the positive or negative impact of one drug resistance trait on other resistances. 

When a bacteria population is exposed to an antimicrobial, resistant bacteria are selected for and 

prevalence of resistance to the antimicrobial in the population increases. Other resistances correlated 

with the selected resistance will also change frequency in the population. We developed Markov networks 

to describe these collateral resistances and evaluate changes in resistance patterns (Love et al., 2016). 

Presence or absence of specific edges at various times can provide information about resistance 
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relationships between specific drugs. Edges consistently present during the study period represent stable 

resistance relationships, and are expected to be found amongst drugs that share common mechanisms 

for resistance, e.g., stable relationships are expected amongst drugs in the β-lactam class since β-

lactamase enzymes are effective, albeit to varying degrees, in all drugs in the class. Edges that were absent 

during early time periods and became consistently present in later time periods may represent emergent 

patterns of drug resistance in the microbial population.  The NARMS data were stratified by year; MIC 

values were log2 transformed. A Spearman rank correlation matrix of the transformed MIC values was 

calculated, and the associated penalized precision matrix was estimated using the graphical least absolute 

shrinkage and selection operator (GLASSO method) (Friedman et al., 2008). This step removed trivial 

partial correlations, making the resultant Markov networks sparser. 

 

Modeling collateral resistance as graphical models provides a number of advantages. First, graphical 

models provide excellent visualization of the systems they represent. Another advantage is that a wide 

variety of parameters have been described to summarize the structure of networks. These parameters 

include but are not limited to: density, modularity, vertex degree, and vertex centrality. These parameters 

describe different structural characteristics and can be tracked over time to summarize structural trends. 

Algorithms also exist to find particularly dense subregions of networks. These correlate with sets of 

potentially important phenotypic resistance traits in Markov networks of resistance. 

 

Building on the graphical models inferred using GLASSO we examined the AMR data with a log-linear 

model, providing a different means of inferring pairwise dependencies and of inferring multi-way 

dependencies. Log2 MIC for each antimicrobial test was converted to a binary susceptible/resistant value 

and collected in a contingency table. A log-linear model was then built for the joint density of the cells in 

this table, using forward inclusion, manually enforcing the hierarchy principle. 

 

Once we had a strong understanding of the MDR patterns in single years, we examined trends in the 

patterns over time. For the GLASSO models we manually inspected changes in the graphical model 

parameters; application of more objective comparison methods, including multivariate time series, is 

planned for future work. For the log-linear approach year was included as a random effect.  

 

3.3 Preliminary Results 

Slaughter and retail had similar trends. It was important to consider both AMR proportion and MIC: each 

captured different AMR changes over time. Most variation was within, not between, years; little additional 

variation was explained by accounting for geographic location (state) in retail data where this information 

is available. We estimated at current rates of data collection, a one-fold change in MIC should be 

detectable in 5 years and a 6% decrease in percent resistance could be detected in 6 years following 

establishment of the new resistance rate. As most variation is within years, the number of isolates tested 

each year is important in determining this power. The current level of 200 samples per year provides a 

high degree of power; the standard power threshold of 0.8 could be achieved with 100 samples per year. 
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Figure 9 shows an example of a Markov network for MIC data for 2004. During the 9 years of the study, 

33 unique edges of the 119 possible were identified, and 19 were present in 6 years or more. The 

remaining unique edges that were identified tended to be weak and only sporadically present. Graphical 

density describes the proportion of all edges that are present and represents overall graph 

interconnectivity (m = mobs/kC2). The density of AMR Markov networks ranged from 16.2% to 24.8% and 

did not appear to change over time (Spearman’s rho -0.14, p = 0.71). Modularity in these networks 

describes how frequently resistance to similar drugs were connected (Gomez et al., 2009; Newman, 2004). 

Assortativity was always positive in these networks and did not change significantly over time (Spearman’s 

rho = -0.48, p = 0.18). Two subgraphs of high density appeared frequently. The first contained the β-lactam 

antimicrobials (penicillins and cephalosporins) and in all years was complete, i.e., all possible edges were 

present (m = 5C2 = 10). The other dense subgraph contained sulfonamides, tetracycline and most of the 

aminoglycosides. This subgraph had a density of 50% or more in six of the nine years in the study. 

 

 

Figure 9. Markov network of drug resistance relationships in Escherichia coli isolated from chicken 

collected in 2004 and tested by the FDA and USDA. The following 15 drugs from the NARMS panel for 

E.coli were included in the graph: ampicillin (AMP), amoxicillin and clavulanic acid (AMC), ceftriaxone 

(AXO), cefoxitime (FOX), ceftiofur (TIO), amikacin (AMI), gentamicin (GEN), kanamycin (KAN), 

streptomycin (STR), nalidixic acid (NAL), ciprofloxacin (CIP), sulfisoxazole (FIS), trimethoprim and 

sulfamethoxazole (COT), chloramphenicol (CHL), and tetracycline (TET). Vertex color indicates 

antimicrobial drug class as follows: β-lactams (light green), quinolones (blue), aminoglycosides (purple), 

sulfonamides (yellow), amphenicols (dark green), and tetracyclines (red) . Vertex size is proportional to 

the percentage of non-susceptible isolates. The presence of an edge between two drugs indicates that 

the two drugs are correlated, when all other variables are controlled. Line weight reflects the strength of 

the partial correlation defining the edge. 
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3.4 Discussion 

The exploratory analysis done here shows that over the past decade percent resistance and mean log2 

MIC at both slaughter and retail have fluctuated up and down in a bacteria-drug specific manner. Logistic 

and linear models confirm this; both year and stage were significant in likelihood ratio tests. Logistic and 

linear models revealed the same overall trends, but each provides a distinctly useful lens on AMR. Logistic 

regression provides a straightforward characterization of situations where a known epidemiologic cutoff 

or clinical breakpoint between resistance and susceptibility exists. Logistic regression, however, is highly 

sensitive to choice of breakpoint and difficult to interpret when no clear breakpoint exists, as for C. coli-

erythromycin, among others (Jaspers et al., 2014). In this case linear regression provides a more 

straightforward characterization of resistance patterns. Also, because linear regression explains the mean 

resistance level, it can in general provide a more holistic lens on AMR. 

Our analysis showed that by performing a hypothesis test comparing level of resistance before and after 

a change, one can detect a change in resistance level as small as 1 log2 MIC in 5 years or a 6% change in 

resistance in only 6 years. Moreover, the current 200 isolates per year level of data collection provides 

sufficient power and could drop to 100 samples per year without significant reduction in power. It might 

be interesting to test change in slope of the trend line before and after a policy change, but our analysis 

showed that resistance patterns do not often have clear trends, so we focused on a comparison test of 

resistance levels. Although it would take 6 years to detect a change in AMR after the new level had been 

reached, which may itself take several years, this is a fairly short period of time on a policy-making scale. 

Thus, although it may be difficult to predict the outcome of the current change in FDA policy, it will not 

be difficult to assess changes in AMR. An implicit assumption of the proposed approach is that changes in 

AMR levels after policy implementation are due largely to the policy. Combined analysis of AMU and 

resistance would provide more evidence (EFSA, 2006); and one method has been proposed earlier in the 

document. However, in the US, AMU data are limited to sales of active compounds aggregated by drug 

class intended for use in all FA since 2009, and data for some antimicrobial classes cannot be 

independently reported (FDA, 2013). 

Overall, the Markov networks of AMR showed a relatively stable collateral resistance structure in this 

population of E. coli. Many of the edges found were consistently present in most or all years during the 

study. The density did not change significantly over time and had less than a 10% range. There may be 

evidence of change in modularity over time. The correlation between modularity and time was 

substantial, but was not found to be statistically significant at α = 0.05. If more years had been included 

in the study, the trend may have been found to be significant. Decreasing modularity over time would 

indicate that collateral resistance involving drugs of different classes was becoming more frequent, which 

could in turn lead to less predictable evolution of MDR strains of bacteria in response to monodrug 

therapy. 

With AMR an increasing threat worldwide, studies such as these are crucial to understand its complex 

dynamics among hosts, microbes, and drugs. Such studies can pave the way for future mitigation 

strategies and policy changes to decrease its threat. 
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4 Evolutionary Genetic Perspective on Antimicrobial Dynamics  

The following discussion provides methodological and strategic suggestions on how to evaluate changes 

in resistance at the genetic level (i.e., do new regulations regarding agricultural AMU result in a change in 

AMR?). The Appendix (Section 7) provides suggestions for deriving more detailed explanations regarding 

what might underlie those genetic changes. 

4.1 Introduction 

Antimicrobial resistance is often divided into intrinsic and acquired. Intrinsic resistance may be referred 

to as insensitivity, as it occurs in a group of bacteria (a species, genus, or even a larger group) that have 

never been susceptible to the drug, because of some structural or functional trait common to all members 

of that group. For example, Enterobacteriaceae are considered insensitive to erythromycin. Acquired 

resistance, about which we are concerned here, is a trait associated with only some strains of a particular 

species. Acquired resistance is due to a genetic change in the bacterial genome, which can be due to a 

mutation (endogenous resistance) or horizontal acquisition of foreign genetic information (exogenous 

resistance). Either way, acquired resistance is due to the genetic complement of that strain, i.e., its DNA 

sequence information. Exogenous resistance involves uptake by bacteria of free pieces of DNA (or 

plasmids) through transformation, transfer of DNA by bacteriophages via transduction or cell-to-cell 

transfer via conjugation. Exogenous resistance can involve entire genes, groups of genes, or fragments of 

genes that are incorporated in the recipient genome via homologous recombination. Endogenous 

resistance involves mutations that occur spontaneously in antimicrobial target genes, that are fixed 

through the process of natural selection, and which confer resistance to those antimicrobials.  

Decades of research subsequent to the development and widespread use of antimicrobials has gradually 

identified the genes, and mutations within genes, responsible for conferring resistance to commonly used 

antimicrobials, for the vast majority of important pathogens. With knowledge of the genes and mutations 

within antimicrobial target genes, that are responsible for conferring resistance, combined with the 

advent of the polymerase chain reaction (PCR), molecular diagnostics became a valuable tool for 

characterizing the resistance profile of bacteria isolates. For many antibiotics, no single gene, but multiple 

genes, are responsible for resistance, so multiplex PCR was the germane approach for molecular diagnosis 

of resistance, followed by microarray analysis which enabled screening of many molecular targets 

simultaneously. Today we are in another revolution in molecular technology, with the advent of Next 

Generation Sequencing (NGS) technologies and their progressively decreasing cost, which has made 

whole genome sequencing (WGS) of bacteria isolates a rapid, cost-effective way to obtain all of the DNA 

sequence information for a bacterial strain and thus all relevant genetic information associated with its 

resistance genotype. WGS accompanied by the library of accumulated information on antibiotic relevant 

genes and target mutations now enables the prediction of an isolate’s resistance profile from its genome 

sequence information (Bradley et al., 2015; Gordon et al., 2014; McDermott et al., 2016; Walker et al., 

2015; Zhao et al., 2015). This has led to development of software tools that can do this rapidly, in a user-

friendly fashion, on laptop computers (Bradley et al., 2015).  
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4.2 The Data 

4.2.1 Bacteria isolates 

The key to understanding the genetics underlying the effectiveness of new regulations and policies on 

AMU and AMR is access to collections of bacterial strains, and ultimately, if further details on origins of 

resistance are desired, possibly also microbiome samples. In terms of the bacterial strains, ideally this 

would involve collections of different key foodborne pathogens – from a) archived samples over a time 

period dating back several years, and from different states (the control group; the pre-regulation sample 

set), and b) contemporary samples collected over the next few years (the experimental group; the post-

regulation sample set) that would serve as a direct comparison to the archived samples. Samples involving 

several key pathogenic species andcommensals, including non-typhoidal Salmonella, E. coli, and possibly 

Enterococcus and Campylobacter, derived from farms (or slaughterhouse), for both swine and beef cattle 

(ideally poultry as well, if the metadata are available) are desirable. Further understanding of the flow or 

path of resistance through the food-processing pipeline could be gained by analysis of slaughterhouse and 

retail data, but for basic understanding of changes in resistance, these additional sources of data are not 

essential. To have the experimental group as meaningful a comparison as possible, to the control group, 

the post-regulation picture should involve sampling isolates of the same pathogen species from farms of 

beef cattle and swine, comprising the same states (ideally the same farms) included in the control. That 

is, the post-regulation sample should mirror as much as feasible, the control sample. An ideal set of farm 

samples, comprising both the pre and post regulation period, would cover a period of several years - 2 or 

3 years pre-regulation, and 3-5 years post-regulation. Having multiple years pre-regulation will allow 

evaluation of stochastic fluctuations in genotypes and resistance profiles, and having multiple years post 

regulation will provide an opportunity to evaluate changes that might not be immediately evident.  

The ideal sampling regime proposed above may not be readily attainable; if isolates from replicate farms 

are unavailable, within states, both pre and post regulation, the most germane plan would be to drop 

replicate farms within a given state, while keeping one farm from each of more than one state and have 

those same states (ideally same farms) represented both pre and post sampling. In terms of hosts, if 

samples were not available for swine and beef cattle, evaluating just beef cattle would still provide 

valuable data.  

  

4.2.2 Genetic Data 

Genome sequences of bacterial isolates derived using NGS technology represent the current best source 

of genetic data to evaluate changes in AMR. Acquiring the genome sequence of an isolate is a more rapid 

and cheaper approach than for example, multiplex PCR of relevant resistance genes, and having the 

complete genome sequence has other benefits like the ability to determine changes in clonal composition 

over time. To attain an effective picture of changes in resistance pre and post new regulations, and the 

genetics underlying it, many genome sequences (at least several hundred – e.g., 500-800) are needed 

from each bacteria species, from both hosts, from each farm, at every time point. This is a great deal of 

data, but due to the genetic diversity of the pathogens and because genetic changes over this relatively 
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short time may be quite subtle, it is the only effective way to get a reasonable approximation of actual 

changes in genotypes and in the prevalence of resistance substitutions. Costs associated with NGS have 

dropped sharply; with the relatively small size of these bacterial genomes many strains can be indexed 

and run on a single run. Sequencing entire bacterial genomes has now become much less expensive than 

doing 7 gene PCR based multi-locus sequencing typing (MLST), with the advantage of having all of the 

genome sequence and not just fragments of 7 genes. The entire genome sequence can provide a much 

higher resolution genotype than just MLST (Stanhope - and others - have found that a single MLST clonal 

group is often comprised of multiple distinct genetic lineages when examined at the genome level) but 

more importantly, for the present problem, it provides the ability to examine resistance substitutions in 

all the relevant resistance conferring loci and to employ powerful new tools for examining the genetics of 

resistance that are based on the analysis of genome sequences (described below – section 4.3.2.1).   

4.3 Genetic Analysis 

4.3.1 General Comments 

Genetically, AMR is ultimately due to a) a subset of bacteria strains within a species carrying particular 

resistance conferring loci (i.e., not all strains of the same species carry the same set of genes, and some 

strains may not carry a resistance conferring locus), or b) key substitutions in some strains, in potentially 

resistance conferring loci (generally the target locus of a particular antibiotic), that are carried by most 

strains of that species (in this case the vast majority of strains carry the gene in question, but some strains 

have nucleotide changes (substitutions) in that gene, that confer resistance to particular antibiotics). Thus, 

if one can evaluate changes in the frequency of these genes or substitutions within genes, over time, 

within bacteria populations, one can determine changes in AMR. This is one level of understanding of the 

problem – the first, most basic, and necessary level of understanding – with additional levels of genetic 

detail about why such changes might have transpired, and their origins, requiring further investigation. 

For example, changes in resistance could be because of a) changes in the clonal composition (represented 

lineages) over time – that is, clones carrying resistance being more or less represented in the population 

at different time points and the origins and/or spread of resistance loci could be through such clonal 

dissemination or b) via lateral gene transfer (LGT) from other bacteria within the environment – either 

conspecifics, or other species represented in the host microbiome.  

 

Genetic analysis of AMR change in the context of the present problem has 2 phases, with different levels 

of understanding. The first phase is examining changes in the presence/absence of resistance loci and in 

resistance conferring substitutions in target loci over time. This is essential; if no additional level of 

understanding about why or how this might have occurred is needed, it might be considered adequate. 

That is, one could address the basic questions of whether there were changes in resistance and in the 

genetic basis underlying that resistance, by doing only this. However, knowing something about the roles 

of clonal dissemination, LGT and the microbiome in explaining those observed genetic changes requires 

more analyses (second phase) (see Appendix (Section 7)). Similarly, the present issue, like all biological 

questions, can be considered at both proximate and ultimate levels of causation. The proximate cause for 

changes in AMR is genetic change in key resistance conferring loci; this can be influenced by, or have as 
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separate components, the above mentioned factors (clonal dissemination, etc.). The ultimate causation 

is changes in selection pressure, i.e., changes in antibiotic usage practices. 

4.3.2 Changes in Frequency of Resistance Loci and Resistance Substitutions 

4.3.2.1 Genome-based Prediction of Resistance 

Some resistance loci, such as those carried on plasmids, are more or less represented in a population of 

bacteria isolates and thus lead to more or less resistance. Other loci, like antibiotic target loci, occur in 

nearly all bacteria isolates of a certain species, but may have different key substitutions within that gene, 

leading to more or less resistance. Sequencing bacteria genomes would recover both such pieces of 

genetic information. One can now use genome sequence data to provide accurate genotypic assays of 

susceptibility or resistance to relevant antibiotics and in general bypass phenotypic drug-susceptibility 

testing. This has been shown to be effective for a number of pathogens including Mycobacterium 

tuberculosis (Bradley et al., 2015; Walker et al. 2015), Staphylococcus aureus (Gordon et al., 2014), 

Salmonella (McDermott et al., 2016), and Campylobacter (Zhao et al., 2015).  

4.3.2.2 Correlating Resistance Gene Substitutions with MICs 

Despite the power and utility of the genome sequencing approach for the present problem, classical MIC 

testing of these genome sequenced isolates is also needed; such data are a fundamental component in 

an evaluation of resistance change. This is because some resistance mechanisms, such as efflux pumps, 

may make it difficult to specifically correlate genotype with resistance phenotypes. MIC data have a range 

of values and the genome sequencing approaches and their associated software (e.g., Bradley et al., 2015) 

tend to generate a result that predicts an isolate to be resistant or susceptible based on currently 

recognized clinical breakpoints. Changes in resistance may be evident from a reduced proportion of the 

bacteria population with resistance carrying alleles – i.e., a greater proportion of the population below 

the clinically recognized breakpoint – but may also be evident in overall lower MIC values. Reduction in 

frequency of isolates with MIC of 64 mg/L to 32mg/L for an antibiotic like streptomycin represents a 

change but not below the resistant/susceptible breakpoint for organisms like E. coli and Salmonella. So, 

MIC data for at least a subset of these genome sequenced isolates are a valuable source of information 

to augment the genome derived picture of resistance change. Having the genome sequence means we 

can enumerate all the substitutions of resistance loci, whether they are currently recognized as key to 

resistance or not.  

Although most of the principal resistance conferring substitutions are known for most resistance genes, 

for many organisms and antibiotics, MICs are more subtly altered by secondary substitutions in the same 

genes (e.g. Stanhope et al., 2008). If we obtain MIC data for a subset of strains for which we also have 

genome sequence data, we can correlate the substitutions with MIC values and acquire a detailed picture 

of genetic change in resistance genes and their relationship with conferring slightly lower or higher MICs. 

The approximate cost of doing a MIC test for a panel of about 20 antibiotics, using an automated 96 well 

Sensititre apparatus (AHDC Cornell), is $25 per isolate. This is an additional significant cost, when one is 

considering thousands of isolates, but we believe that acquiring both MIC and genome sequence data for 
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a subset of the total genome sequenced set, for each time point, increases the potential predictive value 

of the genome sequence data, particularly in identifying minor substitutions which could be linked to 

subtle modifications of MIC. 

A useful method to make such correlations of sequence data with MIC values involves correspondence 

discriminant analysis (CDA), a multivariate statistical method that can be used on contingency tables. 

Classical discriminant analysis is limited to quantitative variables; CDA can be used on frequency tables. 

Thus, CDA can incorporate codon or amino acid frequencies from sequence data. One may also test for 

sites (genetic codons) within the resistance conferring loci that are under positive selection – Darwinian 

selection at the molecular level. Positive selection is the fixation of advantageous mutations driven by 

natural selection, and is a fundamental process behind adaptive changes in genes and genomes. Powerful 

methods can assess positive selection pressure using both phylogenetic and population genetic 

approaches (e.g., Cornejo et al., 2013; Yang and Nielsen, 2000). Stanhope et al. (2008) have performed 

such analyses with over 1000 pbp (penicillin binding protein; targets of beta-lactam antibiotics) sequences 

from Streptococcus pneumoniae isolates and correlated the positively selected sites, and other mutations 

in these genes not identified as being under positive selection, with amoxicillin MIC values, using CDA. As 

well as this analysis of selection pressure in pbp sequences, CDA has e.g., also been used in molecular 

biology to separate bacterial proteins according to their subcellular location (Perriére et al., 1996; Perriére 

and Thioulouse, 2003), and in showing that genetic expression profiles of cortical regions can predict to 

what functional cortical network ring these regions belong (Cioli et al., 2014). Stanhope et al.’s CDA of pbp 

sequences and amoxicillin resistance revealed that not only known resistance substitutions, but also many 

previously unrecognized substitutions that were under positive selection, were important in 

discriminating different amoxicillin MICs. They found evidence of positive selection in all three of these 

pbp sequences with many positively selected sites strongly correlated with discriminating amoxicillin 

MICs, sometimes discriminating low from intermediate MICs, and for other sites, intermediate from fully 

resistant. Many of the positively selected sites could be directly associated with functional inferences 

based on the crystal structures of these proteins.  

Similar analysis could be used with resistance loci from some of the foodborne species proposed here for 

genome sequencing. This will work better for some species and loci better than others, due to levels of 

sequence divergence typical of some species and genes. Phylogenetic based methods of positive 

selection, although having a very low Type I error, require a moderate level of sequence divergence (at 

least a few percentage points). Whether one wants to perform positive selection analysis or not, it would 

be of significant benefit to simply correlate all substitutions in resistance conferring loci sampled at 

different time points with the MICs obtained for those same time points. The MICs indicate what temporal 

changes have occurred; CDA analysis of substitutions and MICs provide more specific molecular 

information on what substitutions in these genes may have been associated with change in MICs. 

4.4 Summary 

The genetics of AMR is complex; it has several layers of understanding, but with the development of NGS 

technology concomitant with convenient new approaches to analyze these genome sequence data for 
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resistance substitutions, the principal genetic goals of the present program can be relatively simply 

attained: is there any change in resistance after onset of new regulations and what are the key genetic 

changes which can be linked to any changes in resistance? Additional levels of understanding like the role 

of clonal dissemination versus LGT and the role of the microbiome would require more detailed analysis 

and sampling. Although such additional analyses would provide a more satisfactory picture of the overall 

biological details behind development and spread (or decline) of AMR, they are not absolutely necessary 

for addressing the principal goal. For a brief explanation of how such additional analyses could be used to 

add value to the present problem, please consult the Appendix (Section 7). 

5 Integration of Methods and Remaining Uncertainty 

Some of the methods proposed in previous sections can provide some evidence on the efficacy of 

interventions in the absence of data on exact AMU in FA. For example, changes in phenotypic and 

genotypic AMR before and after the intervention can be evaluated using the methods described in 

sections 3 and 4. However, these types of "before and after" studies have weaknesses, as changes are 

assumed to be linked to the policy when no other data on AMU or possible confounders are available. 

Assessing the relationship between AMU and AMR before and after implementation of the guidelines 

would provide stronger evidence.  

Several methods have been previously used to integrate data on AMU and AMR. Time series have been 

used to analyze the relationship between AMU and AMR surveillance data and evaluate the efficacy of 

antimicrobial stewardship interventions at the population level. Time series analyses are statistical 

methods for data series with non-independent observations, e.g., in variables measured repeatedly over 

time. To quantify the effect of AMU on resistance, transfer function models in which AMU is an input 

variable and AMR the output series have been built (Willmann et al., 2013). Population genetics and 

biology frameworks have been used to quantify the relationship between the frequency of AMR and AMU 

(e.g., Austin et al., 1997 and 1999). Population genetics models track changes in the frequency of genes 

(or DNA haplotype data). Longitudinal data on the frequency of AMR have been fitted to simple haploid 

models of selection to estimate changes in fitness of sensitive and resistant genotypes during periods of 

presence or absence of AMU (Johnsen et al., 2011). Antimicrobial use effects on AMR are mediated by 

direct effects at the individual level and indirect population level effects by changes in colonization and 

transmission (Lipsitch and Samore, 2002). Population biology models address explicitly the transmission 

dynamics of resistance. Population genetics and biology frameworks have been integrated to address the 

effects of AMU on AMR and relate to observed population level changes in AMR (Austin et al., 1999). 

Overall, the analytic frameworks described above require longitudinal data on AMU and AMR, but 

available data on AMU and AMR are limited and highly uncertain (see section on model uncertainty). 

Figures 10 and 11 depict the levels at which data are required for model operation for the network and 

time-series models, where data exist for the model type, where the model operates, and at what level the 

model results answer the AMR question posed in the introduction. Overall, available AMU (sales) and 

AMR data are insufficient for the modeling approaches used in the past to address AMU and AMR 

relations. 
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Figure 10. Network model. A network model can be used at the gene/bacteria scale. Input antimicrobial 

use (AMU) is measured at the Industry (National Sales) level and scaled to the per animal species level, 

and represents a point estimate for AMU. Assumptions must be made as to the length of time that the 

point value indicates until such time as multi-year AMU and antimicrobial resistance (AMR) profiles are 

developed. Output AMR is provided at the gene/bacteria scale. (FA=food animal) 

 

Few frameworks suitable for modeling systems having much uncertainty and allowing integration of 

diverse data types like expert knowledge or accumulated data exist. Probabilistic graphical models use a 

graph-based representation to represent complex distributions. In section 3, we propose the use of 

Markov graphical models to characterize multidrug resistance outcomes. Another type of probabilistic 

graphical model is the Bayesian network (BN). In the following section, we discuss this emerging modeling 

technique that integrates multiple sources of complex data and provides a practical and explicit 

mathematical formalism. The dynamic Bayesian Network (DBN) is a particular form of the BN that allows 

representation of the evolution of stochastic processes through time. 

 

The BN is a directed acyclic graph encapsulating a joint distribution over all variables and their probabilistic 

dependencies. Recently, DBN has been applied to model complex dynamical systems tainted with 

uncertainty (Baudrit et al., 2010; Izadi et al., 2014). Complexity is dealt with through a hierarchical 

structure incorporating available data expressed as different characteristics (e.g., numerical, categorical, 

etc.), at multiple scales (e.g., animal, bacteria, genes, etc.), and from diverse sources (e.g., expert opinions, 

databases, equations, etc.); the uncertainty pertaining to the system is accounted for by quantifying 

probabilistic dependencies between variables (Baudrit et al., 2010). Prior probabilities of variables and 

parameters can be continuously updated using new data (Smid et al., 2011). The DBN would thus be an 
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intuitive and effective tool to synthesize and integrate the multiple facets of AMU and AMR monitoring 

systems and assess the associations between the two as the FDA implements its risk mitigation strategy. 

 

 
Figure 11. Time-series model. Time-series models can be used at multiple levels in the hierarchy, 

depending on the level at which the question is posed and available data reside. As discussed elsewhere 

in this report, currently measured antimicrobial use (AMU) and antimicrobial resistance (AMR) are point 

estimates. For the time series model to be used effectively, the frequency at which AMU and AMR are 

measured must be increased and/or the time series extended beyond a single year. (FA=food animal)  

Classic epidemiological methods commonly used to assess the effects of AMU on resistance are of limited 

value to assess FDA guidelines because of few data on AMU (exposure) and the complexity of the 

measured outcome (patterns/prevalence of AMR). Also, "before and after" studies, per se (i.e., comparing 

AMU and resistance before and after guideline implementation), have weaknesses, e.g., other influential 

factors may also change simultaneously with the policy change. Our strategy is thus first to establish 

baseline levels of AMR at different points of the food chain (e.g., slaughter, retail) using historical data 

and Bayesian methods. We will then use change-point analysis to see if resistance is decreasing, or 

increasing, at the same rate before and after policy change. To understand the relationship between 

resistance at the current point (e.g., retail) and preceding point (slaughter) and ultimately on the farm, all 

of these stages of the food chain can be included in the Bayesian framework. 

To model the AMR system we will break it into 3 conceptual modules. The first examines dynamics of 

AMR over time, especially in response to two simultaneous interventions: phase out growth-promotion 

claims and phase in veterinary oversight. The second looks at dynamics across slaughter and retail. The 

third examines MDR. Each module will be constructed from a single basic building block (Figure 12), 

expressing the true, hidden prevalence of resistance as a function of a known specificity and sensitivity 

and observed prevalence with measurement error. This module provides a more accurate estimate of 

prevalence by accounting for errors in the acquired resistance data and making it possible to study effects 
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of different types and rates of error on the ability to correctly infer AMR prevalence. This module can be 

thought of as inferring the prevalence based on a single time point (e.g., month or year) of collected data. 

Data from different locations can be aggregated to infer AMR prevalence on regional or national scales.  

 

Figure 12. Diagram of the basic building block showing the relationships among prevalence, sensitivity, 

specificity, positives, negatives, and observations. Circles are inferred values, squares are known values. 

To investigate changes in AMR over time, multiple instances of this basic building block can be connected 

in series (Figure 13) to model a data set that is being continually updated over time. Comparing the results 

of a model of this type constructed before a change in policy to one constructed after the change provides 

a natural framework for evaluating the effect of the policy, e.g., for each major Salmonella serotype. 

Through simulation studies one may determine which measurements are most critical to making high 

quality inferences and how many of these measurements are necessary. 

 

Figure 13. Diagram of 3 basic building blocks connected in series to jointly model antimicrobial resistance 

over 3 time periods. 

The AMR dynamics across slaughter and retail can be modeled by combining 2 basic building blocks to 

simultaneously estimate AMR prevalence in both settings. This sub-module can be connected in series 

into an Object-Oriented Bayesian Network (OOBN) (Philippe and Lionel, 2006) describing stochastic 
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changes of AMR in 2 discrete time scales: across slaughter and retail stages and over calendar sampling 

time (Figure 14). Again, simulation studies can be carried out to optimize the data gathering process.  

 

Figure 14. Diagram of 2 basic building blocks connected to form a sub-module modeling antimicrobial 

resistance (AMR) across slaughter and retail which is in turn connected in series to a second copy of the 

same sub-module to simultaneously model AMR across time. 

Although insights can be gained from examining each antimicrobial in isolation, a true systems approach 

requires modeling the effects of all antimicrobials jointly, to uncover interactions between them. 

Statistical power may also be gained through such a meta-analysis involving multiple drugs. Analysis of 

the dynamic changes of patterns of MDR is needed to foresee complex responses to FDA interventions 

and resistance emergence because of MDR caused by genes linked in transferable resistance elements. 

Despite the care with which the modeling framework was developed, uncertainty will remain in the 

results. This is true for any data analysis, modeling or simulation effort. What is important is that the 

uncertainty be quantified or bound and communicated to stakeholders so that the meaning of results is 

understood. This understanding is required for science based decision-making. 

Optimizing strategies to control AMR must occur through understanding of the system as a whole, 

including all its complexities. This requires merging disciplines ranging from molecular biology to applied 

math to social sciences to gain a better understanding of complex systems like AMR dynamics and 

influential factors in the food supply chain. 

Traditionally, one first compartmentalizes the whole system into convenient subsystems or parts of 

subsystems. Each part is described, and one tries to understand the system as a whole by aggregating 

knowledge of its parts. However, this approach ignores interdependence and instead simplifies what are 

actually quite complex, multidirectional relationships into convenient, unidirectional, relationships. 

Importantly, this approach ignores that in complex systems the dynamics of the whole is a non-linear (not 

a summation) function of the parts. 

The structure of the conceptual model to address the complexity of AMR in the food supply system 

encloses, at its core, the food industry sectors interconnected with food safety and public health 



43 

 

authorities, industry self-monitoring agencies, and media outlets. A food supply chain consists of 

producers, processing facilities, retail outlets and consumers. The model allows time dependent 

assessment of food safety standards, while locating potential hot spots of AMR risk in specified food 

sectors.  

Another quantitative perspective on AMR is the economic impact it has on business and governance costs 

for implementing tests and controls, e.g., in response to regulatory interventions. Key interventions 

imposed on the industry and the correlation with economic costs act, in turn, as feedback loops to 

modeling pathogen emergence and spread in the food supply system. In optimization, a complex system 

often lacks centralized control, i.e., actors may have different objectives. The overall optimization of AMU 

policies has therefore a dual and competing role that aims to minimize risk of AMR and, at the same time, 

observes the allocated economic costs for preventing potential spread of AMR. 

Because media/consumer feedback may be an important but neglected influence in models addressing 

AMR, the media should be included as a modulatory element affecting all constituencies. The media is the 

most widespread and connected component of the systems epidemiology scheme in our model. The 

strength of the “media feedback” may influence whether industry and government take reactive vs. 

preventive actions on AMR. A weak/short-lived media feedback that does not translate into sustained 

consumer activism and/or government actions may favor short-term, limited reactive actions, but does 

not translate into longer-term, far-reaching changes in legislation/regulation. Yet, such intricate 

connectivity demands input from social sciences, connective media, networks, and behavioral studies. For 

now, we assume that the behavioral component accounting for human attitudes and motivation in each 

food industry sector, among policy makers, and consumers, is accounted for in the conceptual model 

through self-regulatory feedback loops internalized in response to such media-related influences. 

5.1 Sources of Model Uncertainty  

Uncertainty can arise from numerous sources, including data (e.g., data quality issues), processes 

conducted on the data (e.g., data extraction/cleaning), use of proxy data, data aging, model selection, 

data analytics and simulation uncertainty, etc. (Figure 15). Communicating uncertainty to stakeholders, 

including decision makers, can also add uncertainty, or provide an opportunity to clarify what the results 

(including the uncertainty) mean, and enable the decision-maker to effectively act upon the results. 

 

 

Figure 15. Data-to-decision pipeline and potential sources of uncertainty 
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Uncertainty in data includes potential observation bias, collection errors, and data quality issues such as 

missing, incorrect or incomplete data. Processes performed on the data (data aggregation, scaling, etc.) 

and use of proxy data introduce uncertainty. For instance, AMU is available as a presumed subset of 

national sales data. National sales data are a proxy for national use data; the actual amount of 

antimicrobials used is uncertain (we assume a certain percentage of sales is used). Also, AMR data are 

available at group/species level; to correctly compare AMU and AMR, one must make further divisions of 

the national “sales to use” data to determine the amount of antimicrobials used in an animal 

species/group. As the exact numbers of animals in a group vary at least daily and estimates are available 

at a gross level, uncertainty occurs in the amount of antimicrobials used per animal group. Uncertainty 

also occurs when the data are a snapshot in time (measured once) of a naturally occurring factor or 

outcome. 

 

Uncertainty related to modeling choices and data availability is illustrated in Figures 10 and 11 above. For 

models, simulations or analysis, stochasticity inherent in the problem space (e.g., different feeding or 

treatment practices) adds uncertainty. Furthermore, it is important to understand how uncertainty 

propagates through the “pipeline” (data and modeling effort). 

 

Confidence bounds on quantitative results have long been used to communicate the scale of uncertainty. 

Uncertainty can also be effectively communicated using graphic visualization approaches and by other 

means. 

5.2 Uncertainty Reduction 

The amount of uncertainty in assessing the association between population-level changes in AMU and 

AMR may appear enormous given the multiple and varied sources of uncertainty described above. It is no 

doubt a significant issue. Recognizing this is one matter; what can be done about it is another. Suggestions 

for the reduction of uncertainty include:  

 Move the observation of data closer to the need for the data. For example, measure on farm use 

of antimicrobials. This may not be practical; however, there are other means such as veterinary 

disclosure or farm self reporting, which carry their own biases. 

 Increase the frequency at which data are collected. For example, measure the use of 

antimicrobials (yearly, seasonally, etc.). 

 Increase the location(s) at which data are collected. Since we have seen that geography had little 

influence on the association of AMU and AMR, location data may not be helpful in reducing that 

uncertainty, but they can help reduce the uncertainty in determining the use per animal since the 

animals in different geographic locations can be determined. 

 Report data collection processes with the data, including any data cleaning processes that may 

have been conducted. 

 Identify model uncertainty and error propagation. 
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This is not an exhaustive list of actions that can be taken to reduce uncertainty; however, they are 

necessary first steps to enable the effective modeling and subsequent communication of the association 

between population-level use of and resistance to antimicrobials. 

 

Note that there will always remain some uncertainty in the results, regardless of the steps taken, because 

the factors associated with AMR are not static and, at least at this point, are not all known and thus cannot 

be considered in this or any AMR modeling framework.  

6 Conclusions/Future Directions 

Antimicrobial resistance is a growing threat with serious implications for human and veterinary medicine, 

the food supply, animal agriculture and the economy. The FDA has thus proposed tightening restrictions 

on AMU in FA. This will have consequences for food production and pricing. It is thus essential to 

understand historical baseline resistance trends and ensure it will be possible to assess the effects of the 

policy change on future levels of resistance. 

Limitations of the proposed modeling process relate to gaps in knowledge and data, especially at the farm, 

animal product processing, and consumer levels, on the AMU and AMR dynamics of interest. Until such 

data are available, this can be overcome by using slaughter and retail data: the former reflect "collective" 

AMR (i.e., both farm and potential contamination and changes during transport and processing), and the 

latter tell us what consumers are receiving. Also, an inaccurate network structure specification may occur, 

and hinder model learning/inference, affecting the validity of predicted dynamics. This can be overcome 

by incorporating more measurements in monitoring systems and expert knowledge, to reduce model 

uncertainty and obtain more reliable predictions. This systems approach could be further refined through 

another NIMBioS Working Group. 

By exploring systematically several metrics of AMU and AMR, including MDR patterns, we will better 

understand what changes can be expected due to the FDA guidance, and provide a methodology to 

maximize the information generated from analysis of costly longitudinal surveillance data on AMR. The 

proposed modeling framework will present an explicit overview of AMR dynamics and improve our 

understanding of the complex ecological and evolutionary processes at play. This quantitative analytical 

framework will allow one to determine the impact of the FDA's policy changes on AMR, and not only 

identify a prioritized list of important quantitative variables, but also the optimal sampling frequency and 

sample size for AMU and AMR data, which is critical for improving the existing national monitoring 

systems. 

7 Appendix 

7.1 Clonal Dissemination 

Bacteria clones are difficult to define precisely as bacteria are not entirely asexual, and recombination 

results in diversification of the ancestral genotype, to produce a group of highly similar but nonetheless 

increasingly diverse genotypes (a clonal complex). The rate at which clonal diversification occurs depends 
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on mutation rate, but significantly, also on level of recombination, which varies among bacteria species. 

MultiLocus Sequence Typing (MLST) has long been the chosen method for genotyping clones and clonal 

complexes, but is becoming outmoded due to the advent of NGS sequencing, the lower NGS sequencing 

costs, and importantly, the increased resolution that WGS can provide in demarcating “sub-clones” of 

putative clinical importance. Phylogenetically, sub-clones, clones, and clonal complexes are all 

monophyletic – each has descended from the same common ancestor – with clones descending from 

within clonal complexes, and sub-clones from within clones. Approaches utilizing genome sequence data 

for phylogenetic reconstruction can provide additional resolution beyond that afforded by MLST and 

identify any clones or sub-clones, which drop in or out of a sample set during the temporal period involved 

herein. This in turn is of importance to the present problem, as certain lineages may bear certain 

resistance conferring mutations in chromosomally carried loci, or may preferentially carry extra-

chromosomal elements, such as plasmids with resistance loci. If genome sequence data are used for 

resistance/susceptibility evaluation, the sequence data will already be available and afford the additional 

purpose of this genome-wide phylogenetic reconstruction. Originally, this was accomplished by 

assembling sequence reads into contigs, annotating the open reading frames, identifying orthologous 

open reading frames across all genomes, aligning the orthologous coding regions, and reconstructing a 

phylogenetic tree from these multiple alignments. This is very labor intensive and requires considerable 

bioinformatics processing of the sequence data.   

An alternative approach has recently been adopted: sequence reads are directly mapped to a single 

reference sequence, single nucleotide polymorphisms (SNPs) are extracted, and a phylogenetic tree is 

inferred using maximum likelihood methods from the aligned SNP positions. Most recently, however, 

Bertels et al. (2014) found that both the exclusion of non-polymorphic positions and alignment to a single 

reference genome introduce errors in genome wide phylogeny reconstruction. They developed a new 

method that combines alignments from sequence read mappings to multiple reference sequences, 

eliminating biases in the resulting phylogenetic reconstructions. They implement this method as a web 

server, fully automating phylogenetic reconstruction from raw sequence reads of bacterial genomes. They 

refer to their program and webserver as REALPHY (Reference sequence Alignment-based Phylogeny 

builder; a Java version of the program is also available for download); this method can be used to examine 

changes in lineage composition over the temporal period examined here. Reconstructing phylogenies 

using REALPHY from a mixture of genome sequence data obtained from successive, or at least a mixture 

of, different time points represented here, should prove most informative: knowing whether lineages are 

more or less represented over time cannot be evaluated effectively without knowing the relationships of 

isolates involving different years. This could involve many hundreds of bacterial genome sequences in a 

phylogenetic reconstruction. We have run REALPHY on a lab workstation (30 CPU; 512 GB memory) 

employing 11 reference genomes, involving a data set of approximately 300 genomes (2 Mb each), which 

took several days; another set of approximately 800 genomes (2 Mb each), 12 reference genomes, on the 

same workstation took just over one week.  

7.2 Lateral Gene Transfer 

Lateral gene transfer (LGT) is movement of genetic material between organisms via a process other than 
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vertical inheritance (transmission of DNA from parent to offspring). In bacteria this occurs by 3 principal 

mechanisms: conjugation, transformation, and transduction. All are involved in transfer of antibiotic 

resistance loci. Detecting LGT is fairly simple when donor and recipient are different species. If an 

antibiotic resistance locus is vertically inherited, phylogenetic reconstructions of this gene acquired from 

multiple isolates of a particular species should conform to the monophyly of the species. That is, 

sequences of this gene from multiple isolates of species X, included in alignments of the same gene from 

other species of bacteria (obtained via The Basic Local Alignment Search Tool (BLAST) searches with the 

query gene from species X), will result in monophyly of the antibiotic resistance locus from species X if 

there is no LGT involving those isolates. If there is LGT of this locus involving one or more of the isolates 

of species X then for these isolates this gene will fall outside the monophyly of the species, and instead 

will fall within the clade of outgroup taxa, probably closely related to one of these outgroup taxa.  

Detecting intraspecific LGT is more difficult. The analytical premise is similar, but here one derives a 

control phylogeny for the isolates in question (e.g., using REALPHY with the antibiotic resistant locus in 

question excised) and compares the phylogeny of the antibiotic resistant locus to that control phylogeny. 

If the phylogeny of the antibiotic locus provides evidence for strongly supported conflicting nodes 

compared to the control phylogeny, this is evidence for intraspecific LGT of that antibiotic locus. If, 

however, the antibiotic phylogeny and the control phylogeny are incongruent, but such incongruence 

does not include strongly-supported conflicting nodes, the evidence for LGT of the antibiotic locus is 

inconclusive. This approach is described in an analysis of the relative role of LGT vs. clonal dissemination 

in the spread of amoxicillin resistance in Streptococcus pneumoniae (Stanhope et al., 2007); for this 

species and antibiotic, clonal dissemination was a more important factor than LGT. Technically, 

intraspecific LGT detection is more difficult than interspecific LGT detection because the phylogenetic 

signal afforded by a single antibiotic locus is generally insufficient to reconstruct robust intraspecific 

phylogenies to reliably compare to the control, and any sample of isolates used in an intraspecific 

phylogeny is a minute subsample of the total possible set, so many donor lineages will not be represented 

in the analysis. Generally, therefore, an approach such as described in Stanhope et al. (2007) will yield a 

conservative minimum estimate of the levels of intraspecific LGT. 

7.3 Metagenomics 

Metagenomics is the study of genetic material in environmental samples. It includes 2 approaches: (1) 

16S metagenomics to identify species diversity in different environments and (2) environmental shotgun 

sequencing to identify genome contents favored by an environment. In the present case of examining the 

role of the environment in AMR of foodborne pathogens and how this might change in the context of new 

regulations, it would involve environmental shotgun sequencing that focused on recovering AMR loci. 

Testing for AMR loci in metagenomics samples has been performed in different situations, including the 

resistome in manure, soil and wastewater from dairy and beef production systems (Noyes et al., 2016b). 

The methodology reported in this paper is state of the art; the technical aspects of this study can be used 

as a framework on which to base an analogous study for the present situation. However, in order to assess 

the impact of the new regulations on environmental AMR, archived metagenomics samples are required 

(sizable in number and from several locations and years); our present understanding of available samples 
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suggests that this is unlikely. If they were somehow made available, we recommend evaluating AMR loci 

from metagenomics samples pre and post the new regulations using Noyes et al. (2016b)’s procedures. 

This would entail identifying the resistance loci, with standard bioinformatics techniques (e.g., BLAST), 

using a curated list of known resistance loci from foodborne pathogens as queries and assessing changes 

in frequency of these loci and specific alleles of these loci in the post regulation samples. In the present 

context of assessing effects of the new regulations on metagenomic resistance loci, the key is to have pre 

and post regulation metagenomic samples; this is a difficult, and unfortunately, unlikely sample set to 

come by. 
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