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Tutorial Structure

1 (45 Minutes) Basics: Intro, debugging, profiling, benchmarking.

2 (15 Minutes) Exercises

3 (45 Minutes) Improving R Code: compilers, vectorization, loops, . . .

4 (30 Minutes) Exercises + Break

5 (45 Minutes) Interfacing to Compiled Code

6 (15 Minutes) Exercises

7 (45 Minutes) Parallelism
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Tutorial Goals

We hope to introduce you to:

1 Basic debugging.

2 Evaluating the performance of R code.

3 Some R best practices to help with performance.

4 Why and how to interface R to C++.

5 Basics of parallelism in R.
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Exercises

Each section has a complement of exercises to give hands-on
reinforcement of ideas introduced in the lecture.

1 More exercises are given than you have time to complete.

2 Later exercises are more difficult than earlier ones.

3 Some exercises require use of things not explicitly shown in lecture;
look through the documentation mentioned in the slides to find the
information you need.
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National Institute for  
Computational Sciences  
University of Tennessee & ORNL partnership 
·  NICS is an NSF HPC center established in 2007 

– Takes advantage of the strengths of UT and ORNL 

·  Series of computers that culminated in a  
1.17 Petaflop system in Jan 2011 
–  First Academic Petaflop: Kraken 

 

2  Managed by UT-Battelle 
for the Department of Energy 

2 Kraken 
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Kraken Actual Usage by Discipline 
(Aug’12)  79.2M hours 

HPC Ops Report August 2012 15 

Physics - 130 
30% 

Chemical, Thermal 
Systems - 610 

14% 
Astronomical  
Sciences - 120 

13% 

Atmospheric 
Sciences - 510 

11% 

Molecular Biosciences - 410 
11% 

Materials 
Research - 150 

7% 

Chemistry - 140 
5% 

Earth Sciences - 520 
3% 

Advanced Scientific 
Computing - 340 

3% 

Electrical and Communication 
Systems - 630 

3% 
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NICS Now… 

· Growing our Data Sciences 

· Collaborating with industry to advance 
several fields 

· Supply NSF cycles through Darter, Beacon, 
and Nautilus 

7 Kraken 
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Nautilus SGI UltraViolet specs 

Compute processor type Intel ~2.0 GHz Nehalem 
Compute cores 1024 
Compute sockets (nodes) 128  oct-core 
Memory per core 4 GB 
Total memory 4 TB (SMP) 
Accelerators 8 NVIDIA Fermi GPUs 
Peak system performance 10 TF 
Interconnect topology NUMAlink5 
Parallel file system space 1 PB (Lustre) 
Parallel file system peak performance 30 GB/s 

9 
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Beacon 
Cray Xtreme-X Supercomputer 

Peak Performance: 210.1 
TFLOP/s 

 Compute Nodes 48 
CPU model Intel Xeon 

E5-2670 

CPUs per node 2 8-core, 2.6GHz 
RAM per node 256 GB 
SSD per node 2 x 480 GB 

(RAID 0) 

Intel® Xeon Phi 
Coprocessors per 

node 

4 x 5110P 
60-core, 

1.053GHz 
8 GB GDDR5 

RAM 
Interconnect FDR InfiniBand 

Fat Tree 

Darter 
Cray XC30 Supercomputer 
Peak Performance: 248.9 

TFLOP/s 
Compute Nodes 748 

CPU model Intel Xeon 
E5-2670 

CPUs per node 2 8-core, 2.6GHz 

RAM per node 16 GB 

Interconnect Cray Aries 
Dragonfly 

#1 on G
reen500 

Hosted Accelerators:  
Intel MICs Conventional Intel Processors 

10 
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•  Extreme	
  Science	
  and	
  Engineering	
  Discovery	
  Environment	
  

•  Follow	
  on	
  NSF	
  project	
  to	
  TeraGrid	
  in	
  2012	
  

•  Centers	
  operate	
  machines,	
  and	
  XSEDE	
  provides	
  seamless	
  
infrastructure	
  for	
  allocaEons,	
  access,	
  and	
  training	
  

•  Researchers	
  propose	
  resource	
  use	
  through	
  XRAS	
  

•  Supports	
  thousands	
  of	
  scienEsts	
  in	
  fields	
  such	
  as:	
  
–  Chemistry	
  
–  BioinformaEcs	
  
–  Materials	
  Science	
  
–  Data	
  Sciences	
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XSEDE Allocations 

•  Want	
  to	
  use	
  XSEDE	
  resources	
  to	
  teach	
  a	
  
class?	
  
– h3ps://portal.xsede.org/alloca;ons-­‐
overview#types-­‐educa;on	
  

•  Just	
  looking	
  to	
  try	
  out	
  a	
  larger	
  resource	
  or	
  a	
  
special	
  resource	
  your	
  campus	
  doesn’t	
  have?	
  
– h3ps://portal.xsede.org/alloca;ons-­‐
overview#types-­‐startup	
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XSEDE Allocations 

•  See	
  a	
  Campus	
  Champion	
  
– h.ps://www.xsede.org/current-­‐champions	
  

•  Ready	
  to	
  scale	
  up	
  your	
  research?	
  
– h.ps://portal.xsede.org/alloca>ons-­‐
overview#types-­‐research	
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More “helpful” resources 
xsede.orgàUser	
  Services	
  
•  Resources	
  available	
  at	
  each	
  Service	
  Provider	
  
•  User	
  Guides	
  describing	
  memory,	
  number	
  of	
  CPUs,	
  file	
  systems,	
  

etc.	
  
•  Storage	
  facili?es	
  
•  So@ware	
  (Comprehensive	
  Search)	
  

•  Training:	
  portal.xsede.org	
  à	
  Training	
  
•  Course	
  Calendar	
  
•  On-­‐line	
  training	
  
•  Cer?fica?ons	
  

•  Get	
  face-­‐to-­‐face	
  help	
  	
  from	
  XSEDE	
  experts	
  at	
  your	
  ins?tu?on;	
  
contact	
  your	
  local	
  Campus	
  Champions.	
  	
  

•  Extended	
  Collabora?ve	
  Support	
  (formerly	
  known	
  as	
  Advanced	
  
User	
  Support	
  (AUSS))	
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Part I

Basics
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Introduction

1 Introduction
A 5 Minute Introduction to R
R is for Lunatics
R Resources
Summary

2 Debugging

3 Profiling
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Introduction A 5 Minute Introduction to R

1 Introduction
A 5 Minute Introduction to R
R is for Lunatics
R Resources
Summary
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Introduction A 5 Minute Introduction to R

Types

logical (“boolean”)

integer (32-bit int)

numeric (double)

complex (double complex)

character (string)
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Introduction A 5 Minute Introduction to R

Happy Opposite Day!

1 T

2 # [1] TRUE

3 F

4 # [1] FALSE

5

6 T <- FALSE

7 F <- TRUE

8

9 T

10 # [1] FALSE

11 F

12 # [1] TRUE
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Introduction A 5 Minute Introduction to R

Package or Library?

I wrote a library.

I put that library into a package.

I installed the package . . . into a library.

I load the package with library() ???
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Introduction A 5 Minute Introduction to R

*BOOM*
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Introduction R is for Lunatics

1 Introduction
A 5 Minute Introduction to R
R is for Lunatics
R Resources
Summary
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Introduction R is for Lunatics

R: A Language for Lunatics

“R is a shockingly dreadful language for an exceptionally useful data
analysis environment.” — Tim Smith, from aRrgh: a newcomer’s
(angry) guide to R.
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Introduction R is for Lunatics

But you can’t deny its popularity!

IEEE Spectrum’s 2014 Ranking of Programming Languages

See:

http://spectrum.ieee.org/static/interactive-the-top-programming-languages#index
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Introduction R is for Lunatics

Top Data Analysis Tool

See: http://www.rexeranalytics.com/Data-Miner-Survey-2013-Intro.html
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Introduction R is for Lunatics
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Introduction R is for Lunatics
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Introduction R is for Lunatics

Why use R at all?

Most diverse set of statistical methods available.

Rapid prototyping.

CRAN (and increasingly GitHub) packages.

Awesome community.

Syntax is designed for analysis of data.
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Introduction R Resources

1 Introduction
A 5 Minute Introduction to R
R is for Lunatics
R Resources
Summary
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Introduction R Resources

Resources for Learning R

The Art of R Programming by Norm Matloff:
http://nostarch.com/artofr.htm

An Introduction to R by Venables, Smith, and the R Core Team:
http://cran.r-project.org/doc/manuals/R-intro.pdf

The R Inferno by Patrick Burns:
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf

Mathesaurus: http://mathesaurus.sourceforge.net/

R programming for those coming from other languages: http:

//www.johndcook.com/R_language_for_programmers.html

aRrgh: a newcomer’s (angry) guide to R, by Tim Smith and Kevin
Ushey: http://tim-smith.us/arrgh/
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Introduction R Resources

Other Invaluable Resources

R Installation and Administration:
http://cran.r-project.org/doc/manuals/R-admin.html

Task Views: http://cran.at.r-project.org/web/views

Writing R Extensions:
http://cran.r-project.org/doc/manuals/R-exts.html

Mailing list archives: http://tolstoy.newcastle.edu.au/R/

The [R] stackoverflow tag.

The #rstats hastag on Twitter.
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Introduction Summary

1 Introduction
A 5 Minute Introduction to R
R is for Lunatics
R Resources
Summary
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Introduction Summary

Summary

R is more data analysis package than programming language.

But you can’t deny its popularity!
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Debugging

1 Introduction

2 Debugging
Debugging R Code
The R Debugger
Debugging Compiled Code Called by R Code
Summary

3 Profiling
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Debugging Debugging R Code

2 Debugging
Debugging R Code
The R Debugger
Debugging Compiled Code Called by R Code
Summary
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Debugging Debugging R Code

Debugging R Code

Very broad topic . . .

We’ll hit the highlights.

For more examples, see:
cran.r-project.org/doc/manuals/R-exts.html#Debugging
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Debugging Debugging R Code

Object Inspection Tools

print()

str()

unclass()
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Debugging Debugging R Code

Object Inspection Tools: print()

Basic printing:

1 > x <- matrix (1:10 , nrow =2)

2 > print(x)

3 [,1] [,2] [,3] [,4] [,5]

4 [1,] 1 3 5 7 9

5 [2,] 2 4 6 8 10

6 > x

7 [,1] [,2] [,3] [,4] [,5]

8 [1,] 1 3 5 7 9

9 [2,] 2 4 6 8 10

nimbios.org/tutorials/TT RforHPC Drew Schmidt High Performance Computing with R 16/172



Debugging Debugging R Code

Object Inspection Tools: str()

Examining the structure of an R object:

1 > x <- matrix (1:10 , nrow =2)

2 > str(x)

3 int [1:2, 1:5] 1 2 3 4 5 6 7 8 9 10
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Debugging Debugging R Code

Object Inspection Tools: unclass()

Exposing all data with unclass():

1 df <- data.frame(x=rnorm (10), y=rnorm (10))

2 mdl <- lm(y~x, data=df) ### That ’s a "tilde" character

3

4 mdl

5 print(mdl)

6

7 str(mdl)

8

9 unclass(mdl)

Try it!

nimbios.org/tutorials/TT RforHPC Drew Schmidt High Performance Computing with R 18/172



Debugging The R Debugger

2 Debugging
Debugging R Code
The R Debugger
Debugging Compiled Code Called by R Code
Summary
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Debugging The R Debugger

The R Debugger

debug()

debugonce()

undebug()
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Debugging The R Debugger

Using The R Debugger

1 Declare function to be debugged: debug(foo)

2 Call function: foo(arg1, arg2, ...)

next: Enter or n followed by Enter.
break: Halt execution and exit debugging: Q.

exit: Continue execution and exit debugging: c.

3 Call undebug() to stop debugging
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Debugging The R Debugger

Using the Debugger

Example Debugger Interaction

1 > f <- function(x){y <- z+1;z <- y*2;z}

2 > f(1)

3 Error in f(1) : object ’z’ not found

4 > debug(f)

5 > f(1)

6 debugging in: f(1)

7 debug at #1: {

8 y <- z + 1

9 z <- y * 2

10 z

11 }

12 Browse [2]>

13 debug at #1: y <- z + 1

14 Browse [2]>

15 Error in f(1) : object ’z’ not found

16 >
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Debugging Debugging Compiled Code Called by R Code

2 Debugging
Debugging R Code
The R Debugger
Debugging Compiled Code Called by R Code
Summary
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Debugging Debugging Compiled Code Called by R Code

Debugging Compiled Code

Reasonably easy to use gdb and
Valgrind (from command line).

gdb — The GNU Debugger;
general purpose debugging.

Valgrind — Memory debugger.

For gdb, start R interactively.

For Valgrind, need a batch
script.
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Debugging Debugging Compiled Code Called by R Code

Debugging with gdb

Suppose we have:

R function: fooR()

Calls the C function: fooC()

We can debug fooC() via gdb by executing the following from a shell:

1 R -d gdb

2 b fooC

3 signal 0

4 fooR (10)
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Debugging Debugging Compiled Code Called by R Code

Debugging with Valgrind

Put the R code you wish to profile in myscript.r and execute the
following from a shell:

1 R -d "valgrind --tool=memcheck --leak -check=full" --vanilla <

myscript.r
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Debugging Summary

2 Debugging
Debugging R Code
The R Debugger
Debugging Compiled Code Called by R Code
Summary

nimbios.org/tutorials/TT RforHPC Drew Schmidt High Performance Computing with R



Debugging Summary

Summary

R has sophisticated debugging utilities for dealing with buggy R code.
(debug(), str(), . . . ).

Using gdb is awkward, but possible.

Using Valgrind is straight-forward.
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Profiling

1 Introduction

2 Debugging

3 Profiling
Why Profile?
Profiling R Code
Advanced R Profiling
Summary
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Profiling Why Profile?

3 Profiling
Why Profile?
Profiling R Code
Advanced R Profiling
Summary
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Profiling Why Profile?

Performance and Accuracy

Sometimes π = 3.14 is (a) infinitely faster
than the “correct” answer and (b) the differ-
ence between the “correct” and the “wrong”
answer is meaningless. . . . The thing is, some
specious value of “correctness” is often irrel-
evant because it doesn’t matter. While per-
formance almost always matters. And I ab-
solutely detest the fact that people so often
dismiss performance concerns so readily.

— Linus Torvalds, August 8, 2008
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Profiling Why Profile?

Why Profile?

Because performance matters.

Bad practices scale up!

Your bottlenecks may surprise you.

Because R is dumb.

R users claim to be data people. . . so act like it!
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Profiling Why Profile?

Compilers often correct bad behavior. . .

A Really Dumb Loop

1 int main(){

2 int x, i;

3 for (i=0; i<10; i++)

4 x = 1;

5 return 0;

6 }

clang -O3 -S example.c

main:

.cfi_startproc

# BB#0:

xorl %eax ,

%eax

ret

clang -S example.c

main:

.cfi_startproc

# BB#0:

movl $0, -4(%rsp)

movl $0, -12(%rsp)

.LBB0_1:

cmpl $10, -12(%rsp)

jge .LBB0_4

# BB#2:

movl $1, -8(%rsp)

# BB#3:

movl -12(%rsp), %eax

addl $1, %eax

movl %eax , -12(%rsp)

jmp .LBB0_1

.LBB0_4:

movl $0, %eax

ret
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Profiling Why Profile?

R will not!

Dumb Loop

1 for (i in 1:n){

2 tA <- t(A)

3 Y <- tA %*% Q

4 Q <- qr.Q(qr(Y))

5 Y <- A %*% Q

6 Q <- qr.Q(qr(Y))

7 }

8

9 Q

Better Loop

1 tA <- t(A)

2

3 for (i in 1:n){

4 Y <- tA %*% Q

5 Q <- qr.Q(qr(Y))

6 Y <- A %*% Q

7 Q <- qr.Q(qr(Y))

8 }

9

10 Q
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Profiling Why Profile?

Example from a Real R Package

Exerpt from Original function

1 while(i<=N){

2 for(j in 1:i){

3 d.k <- as.matrix(x)[l==j,l==j]

4 ...

Exerpt from Modified function

1 x.mat <- as.matrix(x)

2

3 while(i<=N){

4 for(j in 1:i){

5 d.k <- x.mat[l==j,l==j]

6 ...

By changing just 1 line of
code, performance of the
main method improved by
over 350%!
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Profiling Why Profile?

Some Thoughts

R is slow.

Bad programmers are slower.

R can’t fix bad programming.
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Profiling Profiling R Code

3 Profiling
Why Profile?
Profiling R Code
Advanced R Profiling
Summary
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Profiling Profiling R Code

Timings

Getting simple timings as a basic measure of performance is easy, and
valuable.

system.time() — timing blocks of code.

Rprof() — timing execution of R functions.

Rprofmem() — reporting memory allocation in R .

tracemem() — detect when a copy of an R object is created.
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Profiling Profiling R Code

Performance Profiling Tools: system.time()

system.time() is a basic R utility for timing expressions

1 x <- matrix(rnorm (20000*750), nrow =20000 , ncol =750)

2

3 system.time(t(x) %*% x)

4 # user system elapsed

5 # 2.187 0.032 2.324

6

7 system.time(crossprod(x))

8 # user system elapsed

9 # 1.009 0.003 1.019

10

11 system.time(cov(x))

12 # user system elapsed

13 # 6.264 0.026 6.338
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Profiling Profiling R Code

Performance Profiling Tools: system.time()

Put more complicated expressions inside of brackets:

1 x <- matrix(rnorm (20000*750), nrow =20000 , ncol =750)

2

3 system.time({

4 y <- x+1

5 z <- y*2

6 })

7 # user system elapsed

8 # 0.057 0.032 0.089
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Profiling Profiling R Code

Performance Profiling Tools: Rprof()

1 Rprof(filename="Rprof.out", append=FALSE , interval =0.02,

2 memory.profiling=FALSE , gc.profiling=FALSE ,

3 line.profiling=FALSE , numfiles =100L, bufsize =10000L)
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Profiling Profiling R Code
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Profiling Profiling R Code

Performance Profiling Tools: Rprof()

1 x <- matrix(rnorm (10000*250), nrow =10000 , ncol =250)

2

3 Rprof()

4 invisible(prcomp(x))

5 Rprof(NULL)

6

7 summaryRprof ()

8

9 Rprof(interval =.99)

10 invisible(prcomp(x))

11 Rprof(NULL)

12

13 summaryRprof ()
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Profiling Profiling R Code

Performance Profiling Tools: Rprof()

1 $by.self

2 self.time self.pct total.time total.pct

3 "La.svd" 0.68 69.39 0.72 73.47

4 "%*%" 0.12 12.24 0.12 12.24

5 "aperm.default" 0.04 4.08 0.04 4.08

6 "array" 0.04 4.08 0.04 4.08

7 "matrix" 0.04 4.08 0.04 4.08

8 "sweep" 0.02 2.04 0.10 10.20

9 ### output truncated by presenter

10

11 $by.total

12 total.time total.pct self.time self.pct

13 "prcomp" 0.98 100.00 0.00 0.00

14 "prcomp.default" 0.98 100.00 0.00 0.00

15 "svd" 0.76 77.55 0.00 0.00

16 "La.svd" 0.72 73.47 0.68 69.39

17 ### output truncated by presenter

18

19 $sample.interval

20 [1] 0.02

21

22 $sampling.time

23 [1] 0.98
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Profiling Profiling R Code

Performance Profiling Tools: Rprof()

1 $by.self

2 [1] self.time self.pct total.time total.pct

3 <0 rows > (or 0-length row.names)

4

5 $by.total

6 [1] total.time total.pct self.time self.pct

7 <0 rows > (or 0-length row.names)

8

9 $sample.interval

10 [1] 0.99

11

12 $sampling.time

13 [1] 0
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Profiling Advanced R Profiling

3 Profiling
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Profiling Advanced R Profiling

Other Profiling Tools

perf, PAPI

fpmpi, mpiP, TAU

pbdPROF

pbdPAPI
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Profiling Advanced R Profiling

Profiling MPI Codes with pbdPROF

1. Rebuild ppppppbbbbbbddddddRRRRRR packages

R CMD INSTALL pbdMPI_0.2 -1.tar.gz \

--configure -args= \

"--enable -pbdPROF"

2. Run code

mpirun -np 64 Rscript my_script.R

3. Analyze results

1 library(pbdPROF)

2 prof <- read.prof( "output.mpiP")

3 plot(prof , plot.type="messages2")
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Profiling Advanced R Profiling

Profiling with pbdPAPI

Bindings for Performance Application
Programming Interface (PAPI)

Gathers detailed hardware counter data.

High and low level interfaces

Function Description of Measurement

system.flips() Time, floating point instructions, and Mflips
system.flops() Time, floating point operations, and Mflops
system.cache() Cache misses, hits, accesses, and reads
system.epc() Events per cycle
system.idle() Idle cycles
system.cpuormem() CPU or RAM bound∗

system.utilization() CPU utilization∗
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Profiling Advanced R Profiling

Profiling with pbdPAPI

1 x <- system.cache(rnorm(1e5), type="miss")

2 x

3 # L1 Cache Misses: 15186

4 # L2 Cache Misses: 3550

5 # L3 Cache Misses: 1241

6

7 plot(x)

rnorm(1e+05)
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Profiling Advanced R Profiling

Profiling with pbdPAPI

1 y <- system.cache(rnorm(5e5), type="miss")

2

3 plot(x, y)
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Profiling Advanced R Profiling

pbdPAPI

To learn more about pbdPAPI, see:

Guide to the pbdPAPI Package

Advanced R Profiling with pbdPAPI

Cache Rules Everything Around Me
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Profiling Summary

Summary

Profile, profile, profile.

Use system.time() to get a general sense of a method.

Use Rprof() for more detailed profiling.

Other tools exist for more hardcore applications (e.g., pbdPAPI and
pbdPROF).
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Profiling Summary

Exercises
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Part II

Improving R Performance
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Benchmarking

4 Benchmarking
Benchmarking
Summary

5 Free Improvements
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Benchmarking Benchmarking
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Benchmarking Benchmarking

Benchmarking

There’s a lot that goes on when executing an R funciton.

Symbol lookup, creating the abstract syntax tree, creating promises
for arguments, argument checking, creating environments, . . .

Executing a second time can have dramatically different performance
over the first execution.

Benchmarking several methods fairly requires some care.
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Benchmarking Benchmarking

Benchmarking tools: rbenchmark

rbenchmark is a simple package that easily benchmarks different
functions:

1 x <- matrix(rnorm (10000*500), nrow =10000 , ncol =500)

2

3 f <- function(x) t(x) %*% x

4 g <- function(x) crossprod(x)

5

6 library(rbenchmark)

7 benchmark(f(x), g(x), columns=c("test", "replications",

"elapsed", "relative"))

8

9 # test replications elapsed relative

10 # 1 f(x) 100 13.679 3.588

11 # 2 g(x) 100 3.812 1.000
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Benchmarking Benchmarking

Benchmarking tools: microbenchmark

microbenchmark is a separate package with a slightly different
philosophy:

1 x <- matrix(rnorm (10000*500), nrow =10000 , ncol =500)

2

3 f <- function(x) t(x) %*% x

4 g <- function(x) crossprod(x)

5

6 library(microbenchmark)

7 microbenchmark(f(x), g(x), unit="s")

8

9 # Unit: seconds

10 # expr min lq mean median uq

max neval

11 # f(x) 0.11418617 0.11647517 0.12258556 0.11754302 0.12058145

0.17292507 100

12 # g(x) 0.03542552 0.03613772 0.03884497 0.03668231 0.03740173

0.07478309 100
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Benchmarking Benchmarking

Benchmarking tools: microbenchmark

I generally prefer rbenchmark, but the built-in plots for microbenchmark
are nice:

1 bench <- microbenchmark(f(x), g(x), unit="s")

2

3 boxplot(bench)
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Benchmarking Summary

4 Benchmarking
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Benchmarking Summary

Summary

Don’t just time 1 evaluation to compare 2 methods.

You could write the stuff yourself easily enough. . .

But rbenchmark and microbenchmark already exist and work very
well.
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Free Improvements

4 Benchmarking

5 Free Improvements
Building R with a Different Compiler
The Bytecode Compiler
Choice of BLAS Library
Summary
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Free Improvements Building R with a Different Compiler

Better Compiler

GNU (gcc/gfortran) and clang/gfortran are free and will compile
anything, but don’t produce the fastest binaries.

Don’t even bother with MSVC.

Intel icc is very fast on intel hardware.

Better compiler =⇒ Faster R
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Free Improvements Building R with a Different Compiler

Compiling R with icc and ifort

Faster, but not painless.

Requires Intel Composer suite license ($$$).

Improvements are most visible on Intel hardware.

See Intel’s help pages for details.
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Free Improvements The Bytecode Compiler

The Compiler Package

Released in 2011 (Tierney)

Bytecode: sort of like machine code for interpreters. . .

Improves R code speed by 2-5% generally.

Does best on loops.
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Free Improvements The Bytecode Compiler

Bytecode Compilation

Non-core packages not (bytecode) compiled by default.

“Base” and “recommended” (core) packages are.

Downsides:

(slightly) larger install size
(much!) longer install process
doesn’t fix bad code

Upsides: slightly faster.
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Free Improvements The Bytecode Compiler

Compiling a Function

1 test <- function(x) x+1

2 test

3 # function(x) x+1

4

5 library(compiler)

6

7 test <- cmpfun(test)

8 test

9 # function(x) x+1

10 # <bytecode: 0x38c86c8 >

11

12 disassemble(test)

13 # list(.Code , list(7L, GETFUN.OP , 1L, MAKEPROM.OP, 2L,

PUSHCONSTARG.OP,

14 # 3L, CALL.OP, 0L, RETURN.OP), list(x + 1, ‘+‘, list(.Code ,

15 # list(7L, GETVAR.OP, 0L, RETURN.OP), list(x)), 1))
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Free Improvements The Bytecode Compiler

Compiling Packages

From R

1 install.packages("my_package", type="source",

INSTALL_opts="--byte -compile")

From The Shell

1 export R_COMPILE_PKGS=1

2 R CMD INSTALL my_package.tar.gz

Or add the line: ByteCompile: yes to the package’s DESCRIPTION file.
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Free Improvements The Bytecode Compiler

The Compiler: How much does it help really?

1 f <- function(n) for (i in 1:n) 2*(3+4)

2

3

4 library(compiler)

5 f_comp <- cmpfun(f)

6

7

8 library(rbenchmark)

9

10 n <- 100000

11 benchmark(f(n), f_comp(n), columns=c("test", "replications",

"elapsed", "relative"),

12 order="relative")

13 # test replications elapsed relative

14 # 2 f_comp(n) 100 2.604 1.000

15 # 1 f(n) 100 2.845 1.093
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Free Improvements The Bytecode Compiler

The Compiler: How much does it help really?

1 g <- function(n)

2 {

3 x <- matrix(runif(n*n), nrow=n, ncol=n)

4 min(colSums(x))

5 }

6

7

8 library(compiler)

9 g_comp <- cmpfun(g)

10

11

12 library(rbenchmark)

13

14 n <- 1000

15 benchmark(g(n), g_comp(n), columns=c("test", "replications",

"elapsed", "relative"),

16 order="relative")

17 # test replications elapsed relative

18 # 2 g_comp(n) 100 6.854 1.000

19 # 1 g(n) 100 6.860 1.001
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Free Improvements Choice of BLAS Library

The BLAS

Basic Linear Algebra Subprograms.

Basic numeric matrix operations.

Used to compute matrix factorizations (LAPACK).

Used in linear algebra and many statistical operations.

Different implementations available.

Several multithreaded BLAS libraries exist.
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Free Improvements Choice of BLAS Library

Benchmark

1 s e t . s eed (1234)
2 m<− 2000
3 n <− 2000
4 x <− mat r i x (
5 rnorm (m∗n ) ,
6 m, n )
7
8 o b j e c t . s i z e ( x )
9

10 l i b r a r y ( rbenchmark )
11
12 benchmark ( x%∗%x )
13 benchmark ( svd ( x ) )

x%*%x on 2000x2000 matrix (~31 MiB) x%*%x on 4000x4000 matrix (~122 MiB)

svd(x) on 1000x1000 matrix (~8 MiB) svd(x) on 2000x2000 matrix (~31 MiB)
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Free Improvements Choice of BLAS Library

Using Parallel BLAS

See the R Installation and Administration manual for info.

Warning: doesn’t always play nice with the parallel package!
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Free Improvements Summary

Summary

Compiling R itself with a different compiler can improve performance,
but is non-trivial.

The compiler package offers small, but free speedup.

The (bytecode) compiler works best on loops.
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Writing Better R Code
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Writing Better R Code Loops

Loops

for

while

No goto’s or do while’s.

They’re really slow.
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Writing Better R Code Loops

Loops: Best Practices

Profile, profile, profile.

Mostly try to avoid.

Evaluate practicality of rewrite (plys, vectorization, compiled code)

Always preallocate!
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Writing Better R Code Loops

Loops 1

1 square_loop_noinit <- function(n){

2 x <- c()

3 for (i in 1:n){

4 x <- c(x, i^2)

5 }

6

7 x

8 }

9

10

11 square_loop_withinit <- function(n){

12 x <- integer(n)

13 for (i in 1:n){

14 x[i] <- i^2

15 }

16

17 x

18 }
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Writing Better R Code Loops

Loops 2

1 library(rbenchmark)

2 n <- 1000

3

4 benchmark(square_loop_noinit(n), square_loop_withinit(n))

5 # test replications elapsed relative

6 # 1 square_loop_noinit(n) 100 0.257 2.596

7 # 2 square_loop_withinit(n) 100 0.099 1.000
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Writing Better R Code Ply Functions

“Ply” Functions

R has functions that apply other functions to data.

In a nutshell: loop sugar.

Typical *ply’s:

apply(): apply function over matrix “margin(s)”.
lapply(): apply function over list/vector.
mapply(): apply function over multiple lists/vectors.
sapply(): same as lapply(), but (possibly) nicer output.
Plus some other mostly irrelevant ones.

Also Map() and Reduce().
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Writing Better R Code Ply Functions

Ply Examples: apply()

1 x <- matrix (1:10, 2)

2

3 x

4 # [,1] [,2] [,3] [,4] [,5]

5 # [1,] 1 3 5 7 9

6 # [2,] 2 4 6 8 10

7

8 apply(X=x, MARGIN=1, FUN=sum)

9 # [1] 25 30

10

11 apply(X=x, MARGIN=2, FUN=sum)

12 # [1] 3 7 11 15 19

13

14 apply(X=x, MARGIN =1:2, FUN=sum)

15 # [,1] [,2] [,3] [,4] [,5]

16 # [1,] 1 3 5 7 9

17 # [2,] 2 4 6 8 10
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Writing Better R Code Ply Functions

Ply Examples: lapply() and sapply()

1 lapply (1:4, sqrt)

2 # [[1]]

3 # [1] 1

4 #

5 # [[2]]

6 # [1] 1.414214

7 #

8 # [[3]]

9 # [1] 1.732051

10 #

11 # [[4]]

12 # [1] 2

13

14 sapply (1:4, sqrt)

15 # [1] 1.000000 1.414214 1.732051 2.000000
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Writing Better R Code Ply Functions

Transforming Loops Into Ply’s

1 vec <- numeric(n)

2 for (i in 1:n){

3 vec[i] <- my_function(i)

4 }

Becomes:

1 sapply (1:n, my_function)
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Writing Better R Code Ply Functions

Ply’s: Best Practices

Most ply’s are just shorthand/higher expressions of loops.

Generally not much faster (if at all), especially with the compiler.

Thinking in terms of lapply() can be useful however. . .

nimbios.org/tutorials/TT RforHPC Drew Schmidt High Performance Computing with R 72/172



Writing Better R Code Ply Functions

Ply’s: Best Practices

With ply’s and lambdas, can do some fiendishly crafty things.

But don’t go crazy. . .

1 cat(sapply(letters , function(a) sapply(letters , function(b)

sapply(letters , function(c) sapply(letters , function(d)

paste(a, b, c, d, letters , "\n", sep=""))))))
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Writing Better R Code Vectorization

Vectorization
x+y

x[, 1] <- 0

rnorm(1000)
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Writing Better R Code Vectorization

Vectorization

Same in R as in other high-level languages (Matlab, Python, . . . ).

Idea: use pre-existing compiled kernels to avoid interpreter overhead.

Much faster than loops and plys.

1 ply <- function(x) lapply(rep(1, 1000), rnorm)

2 vec <- function(x) rnorm (1000)

3

4 library(rbenchmark)

5 benchmark(ply(x), vec(x))

6 # test replications elapsed relative

7 # 1 ply(x) 100 0.348 38.667

8 # 2 vec(x) 100 0.009 1.000
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Writing Better R Code Vectorization

Vectorization Best Practices

Vectorize if at all possible.

Note that this consumes potentially a lot of memory!
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Writing Better R Code Loops, Plys, and Vectorization

Putting It All Together

Loops are slow.

apply(), Reduce() are just for loops.

Map(), lapply(), sapply(), mapply() (and most other core ones)
are not for loops.

Ply functions are not vectorized.

Vectorization is fastest, but often needs lots of memory.
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Writing Better R Code Loops, Plys, and Vectorization

Squares

Let’s compute the square of the numbers 1–100000, using

for loop without preallocation

for loop with preallocation

sapply()

vectorization
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Writing Better R Code Loops, Plys, and Vectorization

Squares

1 square_sapply <- function(n) sapply (1:n, function(i) i^2)

2

3 square_vec <- function(n) (1:n)*(1:n)

1 library(rbenchmark)

2 n <- 100000

3

4 benchmark(square_loop_noinit(n), square_loop_withinit(n),

square_sapply(n), square_vec(n))

5 # test replications elapsed relative

6 # 1 square_loop_noinit(n) 100 17.296 2470.857

7 # 2 square_loop_withinit(n) 100 0.933 133.286

8 # 3 square_sapply(n) 100 1.218 174.000

9 # 4 square_vec(n) 100 0.007 1.000
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Writing Better R Code Summary

Summary

Pre-allocate your data in loops.

Vectorize when you can.

Try a ply function when you can’t.
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Writing Better R Code Summary

Exercises
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Part III

Interfacing to Compiled Code
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Introduction to Rcpp

7 Introduction to Rcpp
Foreign Language Interfaces
What is Rcpp?
Documentation and Help

8 Using Rcpp

9 The Typical Monte Carlo Simulation for Estimating π

10 Computing the Cosine Similarity Matrix
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Introduction to Rcpp Foreign Language Interfaces

What Language is R Written In?

R is mostly a C program

R extensions are mostly R programs
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Introduction to Rcpp Foreign Language Interfaces

Foreign Language Interfaces

C/C++: .Call(), .C() (deprecated)

Fortran: .Call(), .Fortran() (deprecated)

Java: rJava package

Python: rPython package

. . .

For the remainder, we will focus on C++ via Rcpp.
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Introduction to Rcpp What is Rcpp?

What Rcpp is

R interface to compiled code.

Package ecosystem (Rcpp, RcppArmadillo, RcppEigen, . . . ).

Utilities to make writing C++ more convenient for R users.

A tool which requires C++ knowledge to effectively utilize.

GPL licensed (like R).
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Introduction to Rcpp What is Rcpp?

What Rcpp is not

Magic.

Automatic R-to-C++ converter.

A way around having to learn C++.

A tool to make existing R functionality
faster (unless you rewrite it!).

As easy to use as R.
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Introduction to Rcpp What is Rcpp?

Advantages of Rcpp

Compiled code is fast.

Easy to install.

Easy to use (comparatively).

Better documented than alternatives.

Large, friendly, helpful community.
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Introduction to Rcpp What is Rcpp?

Rcpp Package Dependencies
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Introduction to Rcpp What is Rcpp?

Disadvantages

It’s C++ (there be dragons).

Difficult to debug/profile.

Rcpp designed to only work with R.
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Introduction to Rcpp Documentation and Help

Documentation

The numerous Rcpp vignettes
http://cran.r-project.org/web/packages/Rcpp/index.html

(start with Introduction, quickref, and FAQ).

High Performance Functions with Rcpp, Hadley Wickham:
http://adv-r.had.co.nz/Rcpp.html

Seamless R and C++ Integration with Rcpp (book), http://www.
amazon.com/Seamless-Integration-Rcpp-Dirk-Eddelbuettel/

dp/1461468671/ref=sr_1_1?ie=UTF8
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Introduction to Rcpp Documentation and Help

Where to Get Help

The documentation.

The [rcpp] tag on stackoverflow.

Rcpp-devel list: http://lists.r-forge.r-project.org/

mailman/listinfo/rcpp-devel
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Introduction to Rcpp Documentation and Help

Advice

New to C++?

Get a good book on just C++.

Be patient. C++ is really hard.

Learn the art of reading template explosions.

Know R?

Never use . in object names.

Lines end with ;.

Returns of functions must be explicitly named.

Know C++?

No voids.

If data is modified, do it in a copy.

R functions are not thread safe!!!
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Using Rcpp

7 Introduction to Rcpp

8 Using Rcpp
C vs Rcpp
Using Rcpp with R

9 The Typical Monte Carlo Simulation for Estimating π

10 Computing the Cosine Similarity Matrix

nimbios.org/tutorials/TT RforHPC Drew Schmidt High Performance Computing with R



Using Rcpp C vs Rcpp
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Using Rcpp C vs Rcpp

C/C++ API’s and Extensions for R

The native C interface.

Rcpp
RcppArmadillo

RcppCNPy

RcppEigen

RcppGSL

RcppRedis

. . .

Rcpp11, Rcpp14, . . .
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Using Rcpp C vs Rcpp

C vs Rcpp

To see the difference, let’s construct:

1 list(a=1L, b=2.0)

using the native C interface and with Rcpp.
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Using Rcpp C vs Rcpp

The C Interface

1 #include <R.h>

2 #include <Rinternals.h>

3

4 SEXP examplefun (){

5 SEXP ret , retnames , a, b;

6 PROTECT(a = allocVector(INTSXP , 1));

7 PROTECT(b = allocVector(REALSXP , 1));

8

9 INTEGER(a)[0] = 1;

10 REAL(b)[0] = 2.0;

11

12 PROTECT(ret = allocVector(VECSXP , 2));

13 SET_VECTOR_ELT(ret , 0, a);

14 SET_VECTOR_ELT(ret , 1, b);

15

16 PROTECT(retnames = allocVector(STRSXP , 2));

17 SET_STRING_ELT(retnames , 0, mkChar("a"));

18 SET_STRING_ELT(retnames , 1, mkChar("b"));

19 setAttrib(ret , R_NamesSymbol , retnames);

20

21 UNPROTECT (4);

22 return ret;

23 }
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Using Rcpp C vs Rcpp

Rcpp

1 #include <Rcpp.h>

2

3 // [[Rcpp:: export ]]

4 Rcpp::List examplefun ()

5 {

6 Rcpp:: IntegerVector a(1);

7 Rcpp:: NumericVector b(1);

8

9 a[0] = 1;

10 b[0] = 2.0;

11

12 Rcpp::List ret =

13 Rcpp::List:: create(Rcpp::Named("a") = a,

14 Rcpp::Named("b") = b);

15

16 return ret;

17 }
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Using Rcpp C vs Rcpp

C vs Rcpp

I can’t in good conscience describe C++ as good for beginners.

Rcpp is cleaner.

Like C++? You’ll love Rcpp.
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Using Rcpp Using Rcpp with R
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Using Rcpp Using Rcpp with R

Rcpp

What about compiling, linking, loading, wrapping, etc?
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Using Rcpp Using Rcpp with R

Building with Rcpp

We will be using sourceCpp() to build our examples:

1 Create C++ function as string in R.

2 Use sourceCpp to generate wrapper.

3 Call your function in R.
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Using Rcpp Using Rcpp with R

sourceCpp(): Create C++ Function

1 code <- ’

2 #include <Rcpp.h>

3

4 // [[Rcpp:: export ]]

5 int plustwo(int n)

6 {

7 return n+2;

8 }

9 ’
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Using Rcpp Using Rcpp with R

sourceCpp(): Use sourceCpp

1 library(Rcpp)

2 sourceCpp(code=code)
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Using Rcpp Using Rcpp with R

sourceCpp(): Call Your Function in R

1 plustwo (1)

2 # [1] 3
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The Typical Monte Carlo Simulation for Estimating π
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The Typical Monte Carlo Simulation for Estimating π Background and Outline
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The Typical Monte Carlo Simulation for Estimating π Background and Outline

Example 1 : Monte Carlo Simulation to Extimate π

Sample N uniform observations (xi , yi ) in the unit square [0, 1]× [0, 1].
Then

π ≈ 4

(
# Inside Circle

# Total

)
= 4

(
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)
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The Typical Monte Carlo Simulation for Estimating π Background and Outline

Outline

1 Implement in R using loops.

2 Implement in R using vectorization.

3 Implement in C++ with Rcpp.

4 Benchmark.

5 Examine other performance considerations.
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The Typical Monte Carlo Simulation for Estimating π Implementation
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The Typical Monte Carlo Simulation for Estimating π Implementation

Example 1: Monte Carlo Simulation Code

R Code (loops)

1 mcsim_r <- function(n)

2 {

3 r <- 0L

4

5 for (i in 1:n){

6 u <- runif (1)

7 v <- runif (1)

8

9 if (u^2 + v^2 <= 1)

10 r <- r + 1

11 }

12

13 return( 4*r/n )

14 }
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The Typical Monte Carlo Simulation for Estimating π Implementation

Example 1: Monte Carlo Simulation Code

R Code (vectorized)

1 mcsim_r_vec <- function(n)

2 {

3 x <- matrix(runif(n * 2), ncol =2)

4 r <- sum(rowSums(x^2) <= 1)

5

6 return( 4*r/n )

7 }
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The Typical Monte Carlo Simulation for Estimating π Implementation

Example 1: Monte Carlo Simulation Code

Rcpp Code

1 code <- "

2 #include <Rcpp.h>

3

4 // [[Rcpp:: export ]]

5 double mcsim_rcpp(const int n)

6 {

7 int i, r = 0;

8 double u, v;

9

10 for (i=0; i<n; i++){

11 u = R:: runif(0, 1);

12 v = R:: runif(0, 1);

13

14 if (u*u + v*v <= 1)

15 r++;

16 }

17

18 return (double) 4.*r/n;

19 }

20 "

21

22 library(Rcpp)

23 sourceCpp(code=code)
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The Typical Monte Carlo Simulation for Estimating π Implementation

Example 1: Monte Carlo Simulation Code

Benchmarking the Methods

1 library(rbenchmark)

2

3 n <- 100000L

4

5 benchmark(R.loop = mcsim_r(n),

6 R.vec = mcsim_r_vec(n),

7 C = mcsim_c(n),

8 Rcpp = mcsim_rcpp(n),

9 columns=c("test", "replications", "elapsed",

"relative"))

test replications elapsed relative

3 Rcpp 100 0.309 1.000

1 R.loop 100 65.543 212.113

2 R.vec 100 1.989 6.437

nimbios.org/tutorials/TT RforHPC Drew Schmidt High Performance Computing with R 106/172



The Typical Monte Carlo Simulation for Estimating π Implementation

Example 1: Monte Carlo Simulation Code

Benchmarking the Methods

1 library(rbenchmark)

2

3 n <- 10000000L

4

5 benchmark(R.vec = mcsim_r_vec(n),

6 Rcpp = mcsim_rcpp(n),

7 columns=c("test", "replications", "elapsed",

"relative"))

test replications elapsed relative

2 Rcpp 100 30.825 1.000

1 R.vec 100 135.075 4.382
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The Typical Monte Carlo Simulation for Estimating π Implementation

What About the Compiler?

Benchmarking the Methods

1 library(rbenchmark)

2 library(compiler)

3

4 mcsim_r <- cmpfun(mcsim_r)

5 mcsim_r_vec <- cmpfun(mcsim_r_vec)

6 mcsim_rcpp <- cmpfun(mcsim_rcpp)

7

8 n <- 100000L

9

10 benchmark(R.loop = mcsim_r(n),

11 R.vec = mcsim_r_vec(n),

12 Rcpp = mcsim_rcpp(n),

13 columns=c("test", "replications", "elapsed",

"relative"))

test replications elapsed relative

3 Rcpp 100 0.311 1.000

1 R.loop 100 55.125 177.251

2 R.vec 100 1.107 3.559
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The Typical Monte Carlo Simulation for Estimating π Implementation

Memory Usage in Bytes (roughly)

Loops:
4(n + 3)︸ ︷︷ ︸
Integers

+ 8 · 3︸︷︷︸
Doubles

Vectorized:
4n︸︷︷︸

Integers

+ 8(2 + 2n)︸ ︷︷ ︸
Doubles

Rcpp
4 · 3︸︷︷︸

Integers

+ 8 · 3︸︷︷︸
Doubles
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The Typical Monte Carlo Simulation for Estimating π Summary
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The Typical Monte Carlo Simulation for Estimating π Summary

Summary

For n = 100, 000 iterations and 100 replicates:

Loops Vectorized Rcpp

Avg Runtime (seconds) 0.65543 0.01999 0.00309
Avg Compiled Runtime (seconds) 0.55125 0.1107 0.00311

Memory Usage 1.526 MiB 13.733 MiB 36 bytes

Processor: Core i5 Sandy Bridge
R Version: 3.1.2
C++ Compiler: clang++ 3.5.0
CXX Flags: -O3 -fpic
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The Typical Monte Carlo Simulation for Estimating π Summary

Some Thoughts

Bad R often looks like good C/C++.

The bytecode compiler helps, but not much.

R’s memory footprint is terrible.
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Computing the Cosine Similarity Matrix
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Computing the Cosine Similarity Matrix Background and Outline
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Computing the Cosine Similarity Matrix Background and Outline

Cosine Similarity

Recall from vector calculus that for vectors x and y

cos(x , y) = ‖x‖ ‖y‖ cos(θ(x , y))

We define

cosim(x , y) := cos(θ(x , y)) =
x · y
‖x‖ ‖y‖
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Computing the Cosine Similarity Matrix Background and Outline

Cosine Similarity Matrix

The cosine similarity matrix of a given (possibly non-square) matrix is the
matrix of all pairwise similarities of the columns, i.e., given

Xn,p = [x1, . . . , xp]

We take

cosim(X )ij = cosim(xi , xj)
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Computing the Cosine Similarity Matrix Implementation
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Computing the Cosine Similarity Matrix Implementation

Original implementation

From CRAN’s lsa package version 0.73 (in R/lsa.R)

1 cosine <- function (x, y = NULL){

2 if (is.matrix(x) && is.null(y)) {

3 co = array(0, c(ncol(x), ncol(x)))

4 f = colnames(x)

5 dimnames(co) = list(f, f)

6 for (i in 2:ncol(x)) {

7 for (j in 1:(i - 1)) {

8 co[i, j] = cosine(x[, i], x[, j])

9 }

10 }

11 co = co + t(co)

12 diag(co) = 1

13 return(as.matrix(co))

14 }

15 else if (is.vector(x) && is.vector(y))

16 return(crossprod(x, y)/sqrt(crossprod(x) * crossprod(y)))

17 else

18 stop("argument mismatch.")

19 }
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Computing the Cosine Similarity Matrix Implementation

R Improvements 1

1 cosine_loop <- function(x){

2 cp <- crossprod(x)

3 dg <- diag(cp)

4

5 co <- matrix (0.0, length(dg), length(dg))

6

7 for (j in 2L:length(dg)){

8 for (i in 1L:(j-1L)){

9 co[i, j] <- cp[i, j] / sqrt(dg[i] * dg[j])

10 }

11 }

12

13 co <- co + t(co)

14 diag(co) <- 1.0

15

16 return( co )

17 }
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Computing the Cosine Similarity Matrix Implementation

Rcpp 1

1 library(Rcpp)

2

3 code <- "

4 #include <Rcpp.h>

5

6 // [[Rcpp:: export ]]

7 Rcpp:: NumericMatrix fill_loop(Rcpp:: NumericMatrix cp,

Rcpp:: NumericVector dg){

8 const unsigned int n = cp.nrow();

9 Rcpp:: NumericMatrix co(n, n);

10

11 // Fill lower triangle and diagonal

12 for (int j=0; j<n; j++){

13 for (int i=0; i<=j; i++){

14 if (i == j)

15 co(j, j) = 1.0;

16 else

17 co(i, j) = cp(i, j) / std::sqrt(dg[i] * dg[j]);

18 }

19 }

20
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Computing the Cosine Similarity Matrix Implementation

Rcpp 2

21 // Copy lower triangle to upper

22 for (int j=0; j<n; j++){

23 for (int i=j+1; i<n; i++)

24 co(i, j) = co(j, i);

25 }

26

27 return co;

28 }

29 "

30 sourceCpp(code=code)

31

32

33 cosine_Rcpp <- function(x){

34 cp <- crossprod(x)

35 dg <- diag(cp)

36

37 co <- fill_loop(cp , dg)

38

39 return( co )

40 }
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Computing the Cosine Similarity Matrix Benchmarks

Rcpp 1

1 library(rbenchmark)

2

3 reps <- 10

4

5 for (i in 1:10){

6 n <- i*100

7 x <- matrix(rnorm(n*n), n, n)

8

9 benchmark(cosine(x), cosine_loop(x), cosine_Rcpp(x),

replications=reps , columns=c("test",

10 "relative"))

11 }
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Computing the Cosine Similarity Matrix Benchmarks

Relative Performance

Matrix Dimension cosine() cosine loop() cosine Rcpp()

100x100 340 44.5 1
200x200 535.167 57 1
300x300 441.632 42.895 1
400x400 495.176 42.412 1
500x500 519.877 41.456 1
600x600 512.264 36.758 1
700x700 392.114 25.486 1
800x800 474.341 28.498 1
900x900 523.841 29.367 1

1000x1000 459.322 23.995 1
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Computing the Cosine Similarity Matrix Benchmarks

Relative Performance with Bytecode Compilation

Matrix Dimension cosine() cosine loop() cosine Rcpp()

100x100 300 25.5 1
200x200 360.25 25.125 1
300x300 454.059 29.941 1
400x400 252.885 14.705 1
500x500 315.518 17.671 1
600x600 323.662 15.398 1
700x700 430.507 18.169 1
800x800 385.504 15.043 1
900x900 469.728 16.709 1

1000x1000 505.706 16.625 1
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Computing the Cosine Similarity Matrix Summary

Summary

Bad R often looks like good C/C++.

Compiled code can be much faster than R code.

Vectorized code better than loops, but worse than more tailored
compiled code.
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Computing the Cosine Similarity Matrix Summary

Exercises
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Parallelism
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An Overview of Parallelism Terminology: Parallelism

Parallelism

Serial Programming Parallel Programming
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An Overview of Parallelism Terminology: Parallelism

Parallelism

Serial Programming Parallel Programming
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An Overview of Parallelism Terminology: Parallelism

Parallel Programming Vocabulary: Difficulty in Parallelism

1 Implicit parallelism: Parallel details hidden from user
Example: Using multi-threaded BLAS

2 Explicit parallelism: Some assembly required. . .
Example: Using the mclapply() from the parallel package

3 Embarrassingly Parallel or loosely coupled: Obvious how to make
parallel; lots of independence in computations.
Example: Fit two independent models in parallel.

4 Tightly Coupled: Opposite of embarrassingly parallel; lots of
dependence in computations.
Example: Speed up model fitting for one model.
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An Overview of Parallelism Terminology: Parallelism

Speedup

Wallclock Time: Time of the clock on the wall from start to finish

Speedup: unitless measure of improvement; more is better.

Sn1,n2 =
Time for n1 cores

Time for n2 cores

n1 is often taken to be 1
In this case, comparing parallel algorithm to serial algorithm
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An Overview of Parallelism Terminology: Parallelism

Speedup
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An Overview of Parallelism Terminology: Parallelism

Shared and Distributed Memory Machines

Shared Memory

Direct access to read/change
memory (one node)

Examples: laptop, GPU, MIC

Distributed

No direct access to read/change
memory (many nodes); requires
communication

Examples: cluster, server,
supercomputer
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An Overview of Parallelism Terminology: Parallelism

Shared and Distributed Memory Machines

Shared Memory Machines

Thousands of cores

Nautilus, University of Tennessee
1024 cores
4 TB RAM

Distributed Memory Machines

Hundreds of thousands of cores

Titan, Oak Ridge National Lab
299,008 cores
584 TB RAM
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An Overview of Parallelism Terminology: Parallelism

Parallel Programming Packages for R

Shared Memory

Examples: parallel, snow,
foreach, gputools, HiPLARM

Distributed

Examples: pbdR, Rmpi,
RHadoop, RHIPE

CRAN HPC Task View

For more examples, see: http://cran.r-project.org/web/views/

HighPerformanceComputing.html
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An Overview of Parallelism Terminology: Parallelism

Parallel Programming Packages for R

PETSc

pbdDMAT

PLASMA

Interconnection Network

PROC
+ cache

PROC
+ cache

PROC
+ cache

PROC
+ cache

Mem Mem Mem Mem

Distributed Memory

Memory

CORE
+ cache

CORE
+ cache

CORE
+ cache

CORE
+ cache

Network

Shared Memory Local Memory

GPU
or

MIC

Co-Processor

GPU: Graphical Processing Unit

MIC: Many Integrated Core

Focus on who owns what data and 
what communication is needed

Focus on which 
tasks can be parallel

Same Task on 
Blocks of data

Sockets
MPI

Hadoop

OpenMP
Threads

fork

CUDA
OpenCL

OpenACC

OpenMP
OpenACC

multicore
(fork)                 snow + multicore = parallel

ScaLAPACK
PBLAS
BLACS

MAGMA

Trilinos

DPLASMA

CUBLAS

MKL
ACML
LibSci

.C
.Call
Rcpp

OpenCL
inline

snow
Rmpi

pbdMPI
LAPACK

BLAS

RHIPE

pbdDMATpbdDMAT

HiPLARHiPLARM

magma
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An Overview of Parallelism Guidelines

Independence

Parallelism requires independence.

Separate evaluations of R functions is embarrassingly parallel.
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An Overview of Parallelism Guidelines

Portability

Many parallel R packages break on Windows
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An Overview of Parallelism Guidelines

RNG’s in Parallel

Be careful!

Aided by rlecuyer, rsprng, and doRNG packages.
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An Overview of Parallelism Guidelines

Parallel Programming: In Theory
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An Overview of Parallelism Guidelines

Parallel Programming: In Practice
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An Overview of Parallelism Summary

Summary

Many kinds of parallelism available to R.

Better/parallel BLAS is free speedup for linear algebra, but takes
some work.
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Shared Memory Parallelism in R The parallel Package

The parallel Package

Comes with R ≥ 2.14.0

Has 2 disjoint interfaces.

parallel = snow + multicore
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Shared Memory Parallelism in R The parallel Package

The parallel Package: multicore

Operates on fork/join paradigm.
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Shared Memory Parallelism in R The parallel Package

The parallel Package: multicore

+ Data copied to child on write (handled by OS)

+ Very efficient.

- No Windows support.

- Not as efficient as threads.
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Shared Memory Parallelism in R The parallel Package

The parallel Package: multicore

1 mclapply(X, FUN , ...,

2 mc.preschedule=TRUE , mc.set.seed=TRUE ,

3 mc.silent=FALSE , mc.cores=getOption("mc.cores", 2L),

4 mc.cleanup=TRUE , mc.allow.recursive=TRUE)

1 x <- lapply (1:10, sqrt)

2

3 library(parallel)

4 x.mc <- mclapply (1:10 , sqrt)

5

6 all.equal(x.mc, x)

7 # [1] TRUE
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Shared Memory Parallelism in R The parallel Package

The parallel Package: multicore

1 simplify2array(mclapply (1:10, function(i) Sys.getpid (),

mc.cores =4))

2 # [1] 27452 27453 27454 27455 27452 27453 27454 27455 27452

27453

3

4 simplify2array(mclapply (1:2, function(i) Sys.getpid (),

mc.cores =4))

5 # [1] 27457 2745
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Shared Memory Parallelism in R The parallel Package

The parallel Package: snow

? Uses sockets.

+ Works on all platforms.

- More fiddley than mclapply().

- Not as efficient as forks.
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Shared Memory Parallelism in R The parallel Package

The parallel Package: snow

1 ### Set up the worker processes

2 cl <- makeCluster(detectCores ())

3 cl

4 # socket cluster with 4 nodes on host l o c a l h o s t

5

6 parSapply(cl, 1:5, sqrt)

7

8 stopCluster(cl)
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Shared Memory Parallelism in R The parallel Package

The parallel Package: Summary

All

detectCores()

splitIndices()

multicore

mclapply()

mcmapply()

mcparallel()

mccollect()

and others. . .

snow

makeCluster()

stopCluster()

parLapply()

parSapply()

and others. . .
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Shared Memory Parallelism in R The foreach Package
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Shared Memory Parallelism in R The foreach Package

The foreach Package

On Cran (Revolution Analytics).

Main package is foreach, which is a single interface for a number of
“backend” packages.

Backends: doMC, doMPI, doParallel, doRedis, doRNG,
doSNOW.
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Shared Memory Parallelism in R The foreach Package

The foreach Package: The Idea

Unify the disparate interfaces.
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Shared Memory Parallelism in R The foreach Package

The foreach Package

+ Works on all platforms (if backend does).

+ Can even work serial with minor notational change.

+ Write the code once, use whichever backend you prefer.

- Really bizarre, non-R-ish synatx.

- Efficiency issues if you aren’t careful!
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Shared Memory Parallelism in R The foreach Package

Efficiency Issues
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1 ### Bad performance

2 foreach(i=1:len)

%dopar% tinyfun(i)

3

4 ### Expected performance

5 foreach(i=1: ncores)

%dopar% {

6 out <-

numeric(len/ncores)

7 for (j in

1:( len/ncores))

8 out[i] <- tinyfun(j)

9 out

10 }
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Shared Memory Parallelism in R The foreach Package

The foreach Package: General Procedure

Load foreach and your backend package.

Register your backend.

Call foreach
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Shared Memory Parallelism in R The foreach Package

Using foreach: serial

1 library(foreach)

2

3 ### Example 1

4 foreach(i=1:3) %do% sqrt(i)

5

6 ### Example 2

7 n <- 50

8 reps <- 100

9

10 x <- foreach(i=1: reps) %do% {

11 sum(rnorm(n, mean=i)) / (n*reps)

12 }
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Shared Memory Parallelism in R The foreach Package

Using foreach: Parallel

1 library(foreach)

2 library(<mybackend >)

3

4 register <MyBackend >()

5

6 ### Example 1

7 foreach(i=1:3) %dopar% sqrt(i)

8

9 ### Example 2

10 n <- 50

11 reps <- 100

12

13 x <- foreach(i=1: reps) %dopar% {

14 sum(rnorm(n, mean=i)) / (n*reps)

15 }
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Shared Memory Parallelism in R The foreach Package

foreach backends

multicore

1 library(doParallel)

2 registerDoParallel(cores=ncores)

3 foreach(i=1:2) %dopar% Sys.getpid ()

snow

1 library(doParallel)

2 cl <- makeCluster(ncores)

3 registerDoParallel(cl=cl)

4

5 foreach(i=1:2) %dopar% Sys.getpid ()

6 stopCluster(cl)

nimbios.org/tutorials/TT RforHPC Drew Schmidt High Performance Computing with R 152/172



Shared Memory Parallelism in R The foreach Package

foreach Summary

Make sure to register your backend.

Different backends may have different performance.

Use %dopar% for parallel foreach.

%do% and %dopar% must appear on the same line as the foreach()

call.
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Distributed Memory Parallelism with R Distributed Memory Parallelism

Why Distribute?

Nodes only hold so much ram.

Commodity hardware: ≈ 32− 64 gib.

With a few exceptions (ff, bigmemory), R does computations in
memory.

If your problem doesn’t fit in the memory of one node. . .
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Distributed Memory Parallelism with R Distributed Memory Parallelism

Packages for Distributed Memory Parallelism in R

Rmpi, and snow via Rmpi.

RHIPE and RHadoop ecosystem.

pbdR ecosystem.
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Distributed Memory Parallelism with R Distributed Memory Parallelism

Hasty Explanation of MPI

MPI = Message Passing Interface

Recall: Distributed machines can’t directly manipulate memory of
other nodes.

Can indirectly manipulate them, however. . .

Distinct nodes collaborate by passing messages over network.
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Distributed Memory Parallelism with R Rmpi
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Distributed Memory Parallelism with R Rmpi

Rmpi Hello World

1 mpi.spawn.Rslaves(nslaves =2)

2 # 2 slaves are spawned successfully. 0 failed.

3 # master (rank 0, comm 1) of size 3 is running on: wootabega

4 # slave1 (rank 1, comm 1) of size 3 is running on: wootabega

5 # slave2 (rank 2, comm 1) of size 3 is running on: wootabega

6

7 mpi.remote.exec(paste("I

am",mpi.comm.rank(),"of",mpi.comm.size()))

8 # $slave1

9 # [1] "I am 1 of 3"

10 #

11 # $slave2

12 # [1] "I am 2 of 3"

13

14 mpi.exit()
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Distributed Memory Parallelism with R Rmpi

Using Rmpi from snow

1 library(snow)

2 library(Rmpi)

3

4 cl <- makeCluster (2, type = "MPI")

5 clusterCall(cl , function () Sys.getpid ())

6 clusterCall(cl , runif , 2)

7 stopCluster(cl)

8 mpi.quit()
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Distributed Memory Parallelism with R Rmpi

Rmpi Resources

Rmpi tutorial: http://math.acadiau.ca/ACMMaC/Rmpi/

Rmpi manual:
http://cran.r-project.org/web/packages/Rmpi/Rmpi.pdf
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Distributed Memory Parallelism with R pbdMPI vs Rmpi

pbdMPI vs Rmpi

Rmpi is interactive; pbdMPI is exclusively batch.

pbdMPI is easier to install.

pbdMPI has a simpler interface.

pbdMPI integrates with other pbdR packages.
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Distributed Memory Parallelism with R pbdMPI vs Rmpi

Example Syntax

Rmpi

1 # int

2 mpi.allreduce(x, type =1)

3 # double

4 mpi.allreduce(x, type =2)

pbdMPI

1 allreduce(x)

Types in R

1 > typeof (1)

2 [1] "double"

3 > typeof (2)

4 [1] "double"

5 > typeof (1:2)

6 [1] "integer"
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Distributed Memory Parallelism with R Summary

Summary

Distributed parallelism is necessary when computations no longer fit
in ram.

Several options available; most go beyond the scope of this talk.
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pbdR

Recall: Parallel R Packages

Shared Memory

1 foreach

2 parallel

3 snow

4 multicore

Distributed

1 Rmpi

2 RHIPE, RHadoop

3 pbdR

(and others. . . )
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pbdR

Programming with Big Data in R (pbdR)

Striving for Productivity, Portability, Performance

Freea R packages.

Bridging high-performance compiled code
with high-productivity of R

Scalable, big data analytics.

Offers implicit and explicit parallelism.

Methods have syntax identical to R.

aMPL, BSD, and GPL licensed
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pbdR

pbdR Packages
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pbdR

Distributed Matrices and Statistics with pbdDMAT
Least Squares Benchmark
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pbdR

pbdR Scripts

They’re just R scripts.

Can’t run interactively (with more than 1 rank).

We can use pbdinline to get “pretend interactivity”.
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11 An Overview of Parallelism

12 Shared Memory Parallelism in R

13 Distributed Memory Parallelism with R

14 The pbdR Project

15 Distributed Matrices
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Distributed Matrices

ddmatrix: 2-dimensional Block-Cyclic with 6 Processors

x =



x11 x12 x13 x14 x15 x16 x17 x18 x19
x21 x22 x23 x24 x25 x26 x27 x28 x29
x31 x32 x33 x34 x35 x36 x37 x38 x39
x41 x42 x43 x44 x45 x46 x47 x48 x49
x51 x52 x53 x54 x55 x56 x57 x58 x59
x61 x62 x63 x64 x65 x66 x67 x68 x69
x71 x72 x73 x74 x75 x76 x77 x78 x79
x81 x82 x83 x84 x85 x86 x87 x88 x89
x91 x92 x93 x94 x95 x96 x97 x98 x99


9×9

Processor grid =

∣∣∣∣ 0 1 2
3 4 5

∣∣∣∣ =

∣∣∣∣ (0,0) (0,1) (0,2)
(1,0) (1,1) (1,2)

∣∣∣∣
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Distributed Matrices

Understanding ddmatrix: Local View


x11 x12 x17 x18
x21 x22 x27 x28
x51 x52 x57 x58
x61 x62 x67 x68
x91 x92 x97 x98


5×4


x13 x14 x19
x23 x24 x29
x53 x54 x59
x63 x64 x69
x93 x94 x99


5×3


x15 x16
x25 x26
x55 x56
x65 x66
x95 x96


5×2

x31 x32 x37 x38
x41 x42 x47 x48
x71 x72 x77 x78
x81 x82 x87 x88


4×4


x33 x34 x39
x43 x44 x49
x73 x74 x79
x83 x84 x89


4×3


x35 x36
x45 x46
x75 x76
x85 x86


4×2

Processor grid =

∣∣∣∣ 0 1 2
3 4 5

∣∣∣∣ =

∣∣∣∣ (0,0) (0,1) (0,2)
(1,0) (1,1) (1,2)

∣∣∣∣
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Distributed Matrices

Methods for class ddmatrix

pbdDMAT has over 100 methods with identical syntax to R:

`[`, rbind(), cbind(), . . .

lm.fit(), prcomp(), cov(), . . .

`%*%`, solve(), svd(), norm(), . . .

median(), mean(), rowSums(), . . .

Serial Code

1 cov(x)

Parallel Code

1 cov(x)
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Distributed Matrices

ddmatrix Syntax

1 cov.x <- cov(x)

2 pca <- prcomp(x)

3 x <- x[, -1]

4 col.sd <- apply(x, MARGIN=2, FUN=sd)
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Part V

Wrapup
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Wrapup

16 Wrapup
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Wrapup

Performance-Centered Development Model

1 Just get it working.

2 Profile vigorously.
3 Weigh your options.

Improve R code? (lapply(), vectorization, a package, . . . )
Incorporate C/C++?
Go parallel?
Some combination of these. . .

4 Don’t forget the free stuff (BLAS, bytecode compiler, . . . ).

5 Repeat 2 — 4 until performance is acceptable.
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Thanks so much for attending!

Questions?

Followup session: Friday, March 6 from 1:00pm-3:00pm Eastern Time

Please go to www.xsede.org and create account if you don’t have one
already.

Register for training at: https://portal.xsede.org/

course-calendar/-/training-user/class/375/session/618

Password is: hpcR.

nimbios.org/tutorials/TT RforHPC Drew Schmidt High Performance Computing with R 172/172

www.xsede.org
https://portal.xsede.org/course-calendar/-/training-user/class/375/session/618
https://portal.xsede.org/course-calendar/-/training-user/class/375/session/618

	Basics
	Introduction
	A 5 Minute Introduction to R
	R is for Lunatics
	R Resources
	Summary

	Debugging
	Debugging R Code
	The R Debugger
	Debugging Compiled Code Called by R Code
	Summary

	Profiling
	Why Profile?
	Profiling R Code
	Advanced R Profiling
	Summary


	Improving R Performance
	Benchmarking
	Benchmarking
	Summary

	Free Improvements
	Building R with a Different Compiler
	The Bytecode Compiler
	Choice of BLAS Library
	Summary

	Writing Better R Code
	Loops
	Ply Functions
	Vectorization
	Loops, Plys, and Vectorization
	Summary


	Interfacing to Compiled Code
	Introduction to Rcpp
	Foreign Language Interfaces
	What is Rcpp?
	Documentation and Help

	Using Rcpp
	C vs Rcpp
	Using Rcpp with R

	The Typical Monte Carlo Simulation for Estimating 
	Background and Outline
	Implementation
	Summary

	Computing the Cosine Similarity Matrix
	Background and Outline
	Implementation
	Benchmarks
	Summary


	Parallelism
	An Overview of Parallelism
	Terminology: Parallelism
	Guidelines
	Summary

	Shared Memory Parallelism in R
	The parallel Package
	The foreach Package

	Distributed Memory Parallelism with R
	Distributed Memory Parallelism
	Rmpi
	pbdMPI vs Rmpi
	Summary

	The pbdR Project
	Distributed Matrices

	Wrapup
	Wrapup


