# PROGRAM EVALUATION 101

Multi-Scale Evaluation in STEM Education



Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES)



Copyright 2017 NISER, University of Tennessee

## MEET YOUR MODERATOR



### Louis J. Gross, PhD

Founding Director, NIMBioS

**Professor of Ecology and Evolutionary Biology and Mathematics,** University of Tennessee, Knoxville



February 10, 2017

## • WHO IS THIS PRESENTATION FOR?







### Principal Investigators of NSF INCLUDES Pilot Projects

### **STEM educators**

planning to submit INCLUDES Pilot Projects STEM Educators Interested in learning more about program evaluation

### HOW TO INTERACT TODAY



## MEET YOUR PRESENTERS



### Pam Bishop, PhD

**Director,** National Institute for STEM Evaluation and Research (NISER)

Associate Director for STEM Evaluation, National Institute for Mathematical and Biological Synthesis (NIMBioS)



### Sondra LoRe, EdS

**Evaluation Associate,** National Institute for STEM Evaluation and Research (NISER)



### TODAY'S Presentation

### WHAT IS PROGRAM EVALUATION?

### THE EVALUATION PROCESS

### 2 APPROACHES TO EVALUATION

5 QUESTIONS and COMMENTS

### 3 WORKING WITH AN EVALUATOR

6 HOW TO LEARN MORE

## • WHAT IS PROGRAM EVALUATION?



### PROGRAM EVALUATION IS:

Systematic collection of data about the activities, characteristics, and results of programs to (1) to make judgments about the program, (2) improve or further develop program effectiveness, (3) inform decisions, and/or (4) increase understanding.

Michael Quinn Patton

### 4 Elements of evaluation definitions

Systematic process





Enhances knowledge



### Why is evaluation important?

### **PROGRAM EVALUATION**

- ✓ Enhances your project design
- ✓ Defines your resources and timeline for deliverables
- Improves the implementation and effectiveness of projects
- ✓ Supports plans for sustainability
- Provides evidence to support future funding



## TODAY'S Presentation

### WHAT IS PROGRAM EVALUATION?

THE EVALUATION PROCESS

### APPROACHES TO EVALUATION

5 QUESTIONS and COMMENTS

### 3 WORKING WITH AN EVALUATOR

6 HOW TO LEARN MORE

2

## • APPROACHES TO EVALUATION

What kind of evaluation did you need?



Our 3 year project is coming to an end and were told we needed an evaluation.

What kind is that?



Cartoons used with permission of Chris Lysy, Freshspectrum.com

## + APPROACHES TO EVALUATION



## How we assess success?



### How we assess success?



### How do we assess success?



**Developmental Evaluation** 

Create a new signature Brussel sprout recipe.

Develop new approaches and be responsive to changing conditions.



**Formative Evaluation** 

Taste the recipe while cooking and adjust to improve.

Improve as you implement.



**Summative Evaluation** 

Find out in what ways your recipe was a success.

Determine the ways in which you were successful.



## TODAY'S Presentation

### WHAT IS PROGRAM EVALUATION?

THE EVALUATION PROCESS

2 APPROACHES TO EVALUATION

5 QUESTIONS and COMMENTS

### WORKING WITH AN EVALUATOR

#### 6 HOW TO LEARN MORE

3

## • WORKING WITH AN EVALUATOR

# Q: When is the right time to get started with an evaluator? A: As SOON as possible!

## How to find the right evaluator

- Ask STEM education colleagues for a reference
- ✓ Ask your sponsored projects officer
- ✓ American Evaluation Association Find an evaluator directory



## Considerations when choosing



### Questions to answer

- Does the evaluator have experience evaluating STEM education projects?
- Does the evaluator understand your STEM education project?
- Does the evaluator take a collaborative approach to evaluation design? (i.e. will he/she work with you to determine your project's evaluation needs?)

## Tips for working effectively



- ✓ Discuss expectation, processes, and timeline up front
- ✓ Review goals and objectives of the evaluation regularly
- Communicate data and reporting needs, including who will need what data when
- Appoint a project liaison to work directly with the evaluator
- ✓ Create a shared document system

## TODAY'S Presentation

### WHAT IS PROGRAM EVALUATION?

THE EVALUATION PROCESS

### 2 APPROACHES TO EVALUATION

5 QUESTIONS and COMMENTS

### 3 WORKING WITH AN EVALUATOR

6 HOW TO LEARN MORE

## TYPICAL EVALUATION PROCESS



February 10, 2017

## **TYPICAL EVALUATION PROCESS**



February 10, 2017

## Mapping your project



"I think you should be more explicit here in step two."

## Mapping your project



### Mapping your project Logic Models



### Mapping your project Theory of Change Models



February 10, 2017

### Mapping your project



February 10, 2017

## Logic model vs. TOC

|                    | Logic Model                                                                                                               | Theory of Change Model                                                                                                                                                       |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What it<br>depicts | <ul> <li>✓ Show a list of project<br/>components</li> <li>✓ Linear representation</li> <li>✓ Descriptive</li> </ul>       | <ul> <li>✓ Shows relationship among<br/>project components and<br/>goals/outcomes</li> <li>✓ Helps stakeholders clearly<br/>identify project path</li> </ul>                 |
| Pros               | <ul> <li>✓ Useful to give quick overview</li> <li>✓ Summarizes a complex program<br/>into simple parts</li> </ul>         | <ul> <li>✓ Useful when showing how<br/>outcomes will be accomplished</li> <li>✓ Can help explain why and where<br/>a project component worked or<br/>did not work</li> </ul> |
| Cons               | <ul> <li>✓ Does not include causal<br/>pathways</li> <li>✓ Too simple to show enough<br/>detail for evaluation</li> </ul> | <ul> <li>✓ Can be a lot of work to create</li> <li>✓ Can be difficult to explain to<br/>stakeholders who you need to<br/>invest time in creating with you</li> </ul>         |

## **TYPICAL EVALUATION PROCESS**



## Stakeholder mapping



## + Stakeholder mapping

| Keep Satisfied           | Manage Closely        |  |
|--------------------------|-----------------------|--|
| Department heads         | Engineering students  |  |
| Funding agency           | Engineering faculty   |  |
|                          | Project staff         |  |
| Invest Minimum Effort    | Keep Informed         |  |
| Non-engineering students | Engineering community |  |
|                          |                       |  |
|                          |                       |  |

Involvement in the project

Importance in the project

## Stakeholder mapping

#### **Engage your stakeholders**



## Stakeholder mapping

| Koop Catisfied           | Managa Classily                         |  |
|--------------------------|-----------------------------------------|--|
| keep satistied           | Ivianage Closely                        |  |
| Department heads         | Engineering students                    |  |
| Funding agency           | Engineering faculty                     |  |
|                          | Project staff                           |  |
| Invest Minimum Effort    | Keen Informed                           |  |
|                          | Keep morned                             |  |
| Non-engineering students | Engineering community                   |  |
|                          |                                         |  |
|                          |                                         |  |
|                          | /////////////////////////////////////// |  |

Involvement in the project

Importance in the project

## **TYPICAL EVALUATION PROCESS**



## Develop evaluation questions

### Use stakeholders from analysis

| Stakeholders         | Evaluation Questions                                                                           |
|----------------------|------------------------------------------------------------------------------------------------|
| Engineering students | To what extent did students participate in the implicit bias training?                         |
|                      | Did they find it useful?                                                                       |
|                      | In what ways did the training affect their awareness and understanding of implicit bias?       |
| Engineering faculty  | Did faculty receive appropriate information and training regarding their roles in the project? |
|                      | To what extent did female engineering faculty become involved with mentoring new students?     |
| uary 10, 2017        |                                                                                                |

## **TYPICAL EVALUATION PROCESS**



## Determine data collection plan

| Stakeholders         | Evaluation Questions                                                                           | Data Collection Plan                                                                         |
|----------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Engineering students | To what extent did students participate<br>in the implicit bias training?                      | Student pre/post survey (before and after orientation, workshops, and intervention training) |
|                      | In what ways did the training affect<br>their awareness and understanding of<br>implicit bias? | Student interviews (end of each<br>semester)<br>Student focus groups (annual)                |
| Engineering faculty  | Did faculty receive appropriate                                                                | Faculty Interviews (one month into the                                                       |
|                      | information and training regarding their roles in the project?                                 | project, end of semester)                                                                    |
|                      | To what extent did female engineering faculty become involved with                             | Student interviews (end of each semester)                                                    |
|                      | mentoring new students?                                                                        | Student focus groups (annual)                                                                |

## **TYPICAL EVALUATION PROCESS**



February 10, 2017

## Collect and Analyze data

### Quantitative data



### Qualitative data





February 10, 2017

## TYPICAL EVALUATION WORKFLOW





### Ways to report

- ✓ Formal reports
- ✓ "Data dumps"
- ✓ Informal conversations
- ✓ Formal presentations

### Working Group Participants

| Group   | Participant   | Field of Study        |
|---------|---------------|-----------------------|
| Group 1 | Participant 1 | Biological Sciences   |
| Group 1 | Participant 2 | Computer Sciences     |
| Group 1 | Participant 3 | Mathematics           |
| Group 2 | Participant 1 | Engineering           |
| Group 2 | Participant 2 | Education             |
| Group 2 | Participant 3 | Biological Sciences   |
| Group 3 | Participant 1 | Humanities            |
| Group 3 | Participant 2 | Health Sciences       |
| Group 3 | Participant 3 | Agricultural Sciences |



#### Changes in student understanding of research ethics



**REU students** felt they overall gained understanding across ten areas of ethics training from the **beginning** to the **end** of the REU program.

The greatest gain was in understanding confidentiality issues.



Average

Very good

## **TYPICAL EVALUATION PROCESS**



February 10, 2017

## Revisit your project map



February 10, 2017

## **TYPICAL EVALUATION PROCESS**



## TODAY'S Presentation

### WHAT IS PROGRAM EVALUATION?

. THE EVALUATION PROCESS

### 2 APPROACHES TO EVALUATION

5 QUESTIONS and COMMENTS

### 3 WORKING WITH AN EVALUATOR

6 HOW TO LEARN MORE

## TODAY'S Presentation

### WHAT IS PROGRAM EVALUATION?

THE EVALUATION PROCESS

### 2 APPROACHES TO EVALUATION

5 QUESTIONS and COMMENTS

### 3 WORKING WITH AN EVALUATOR

HOW TO LEARN MORE

6

### • HOW TO LEARN MORE

Our NSF INCLUDES conference website: www.nimbios.org/IncludesConf

JOIN OUR LIVE STREAMS on Multi-Scale Evaluation in STEM Education

TUTORIAL CONFERENCE February 22nd

February 23<sup>rd</sup> and 24th

Register here for one or both here: https://tinyurl.com/includesconf



### Contact us!



pbaird@utk.edu



sondra@utk.edu



# Thank you!



Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES)

These STEM evaluation activities are supported by the National Science Foundation through award HRD-1650390 to the University of Tennessee, Knoxville.