
Session 4  - how to learn in the context of AM

So far we have assumed that we 
were able to characterise the 
dynamics of the system ..
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In many domains, we do not have access to the dynamics 
but still need to make decisions

Adaptive management provides a solution. Adaptive management is “learning 
by doing”. Decisions are selected to achieve a management objective while 
simultaneously gaining information to improve future management outcomes 
(Walters and Hilborn 1976).
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monitor
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Main questions to 
address before 
undertaking an AM 
approach
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Parameter or model  
uncertainty

Can you identify an uncertain 
variable that drives the dynamics?

Not adaptive 
management

No
Yes

Yes No

Objective and actions defined, ability 
to monitor outcomes over time, 

uncertain system dynamics

1. Prerequisites

2. Identify type of 
uncertainty



1) Parameter uncertainty: 
e.g. survival, growth, probability of success

2) Model uncertainty:
e.g. competing scenarios, Sea Level Rise, 
expert opinions, population dynamics.

Can you provide an example of uncertain 
information for your system? Unknow parameter? 
Unknow model?

Adaptive management deals with two types of “structural” 
uncertainty

decisiont

statet statet+1

Don’t knowt
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Main questions to 
address before 
undertaking an AM 
approach

Evaluate the need for AM -

is the value of information >0 ?
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Solve 
MDP

Can the problem be solved using active adaptive 
management?

Active adaptive management Passive adaptive management

Will reducing the uncertainty provide a greater outcome?

NoYes

Yes No

Parameter or model  
uncertainty

Can you identify an uncertain 
variable that drives the dynamics?

Not adaptive 
management

No
Yes

Yes No

Objective and actions defined, ability 
to monitor outcomes over time, 

uncertain system dynamics

1. Prerequisites

2. Identify type of 
uncertainty

3. Evaluate need for AM

4. Solve optimisation problem



R. Bellman

Stochastic dynamic 
programming

manage

monitor

learn

objective 

Bayes theorem 

Passive adaptive management provides the best actions 
given our current knowledge … Learning occurs 
independently.

heuristics 
easier to solve
(certainty 
equivalence principles)



R. Bellman

Stochastic dynamic 
programming

manage

monitor

learn

objective 

Bayes theorem 

Active adaptive management provides the best actions 
given our current knowledge … AND what we will learn in 
the future

Optimal but
difficult to solve



We can optimise the way we perform adaptive 
management or ‘learning by doing’- but how?

How to represent our current knowledge 
and how we can ‘learn’:

1. Choose a sufficient statistic

2. Update sufficient statistic 
manage

monitor

learn

objective
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Adaptive management problems differ from classical 
MDPs because: 

• The value of a parameter or the true model is 
hidden from the decision maker (Yt)

• The value of a parameter or the true model 
influences the dynamics of the system (St) 
and best action (at).

The optimal policy π* (strategy A*(S)) depends 
on both the observable state variable and the 
value of the hidden variable.
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at

St St+1

Yt
Yt+1



Sufficient statistics are key to Adaptive management

The value of the hidden variable must be estimated 
using the history of observations and actions:

st-n,at-n,st+1-n,at+1-n … st -> at

Because it is not feasible to remember the complete 
past history of observations and actions, sufficient 
statistics are used (Bertsekas 1995, p 251; Fisher 
1922). 

Sufficient statistics allow us to retain data without 
losing any important information.
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at

St St+1

Yt Yt+1



Desirable properties of sufficient statistics
To be useful in adaptive management 
problems, sufficient statistics must:
▪ obey the Markov property;

▪ easy to represent;

▪ easy to update.

Finding sufficient statistics that best 
represent uncertain variables is a central 
and long standing challenge of adaptive 
management (Walters 1986).
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1) Parameter uncertainty: 
e.g. survival rate, growth rate, 
probability of success

2) Model uncertainty:
e.g. competing scenarios, SLR, 
expert opinions

Hidden variables can take finite or infinite number of values
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Finite # 
values

Infinite # 
values 

Survival rate

Growth rate

Prob. of 
success

Competing 
scenarios

Expert 
opinions

~takes infinite number of values

~takes finite number of values



When hidden variables take finite values: belief states.

For problems with hidden 
variables that can take 
finite values:

▪ belief states are widely 
used sufficient statistics. 

Belief states are 
probability distributions 
over finite quantities

and can be updated using 
Bayes’ theorem.
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Domain Objective Belief states over

Sustainable 

harvest 

(Williams et al. 

1996)

Maximize long-term 

cumulative harvest of 

waterfowl, above a certain 

density threshold

Two alternative models of 

population response to 

harvest and survival

Conservation 

(Moore et al. 

2011)

Maximize time-discounted 

plant population size across 

years without burning

Two models describing the 

juvenile plant stage response 

to burning

Climate change, 

conservation 

(Nicol et al. 

2015)

Maximize migratory shorebirds 

populations across space and 

subject to seal level rise 

Three models representing 

alternative responses to 

management under sea level 

rise



An application
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At

breeding 
population

St

St+1

Conseq. of 
Sea Level rise 

Yt

Climate change, 

conservation 

(Nicol et al. 

2015)

Maximize migratory shorebirds 

populations across space and 

subject to seal level rise 

Three models representing 

alternative responses to 

management under sea level 

rise

S= breeding population

Y={0m, 1m,2m}; //uncertain

Belieft=[b(0m), b(1m), b(2m)]

bt=[1/3, 1/3, 1/3];

bt+1=[0.4, 0.2, 0.2];

Conseq. of 
Sea Level rise 

Yt+1



An application
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Climate change, 

conservation 

(Nicol et al. 

2015)

Maximize migratory shorebirds 

populations across space and 

subject to seal level rise 

Three models representing 

alternative responses to 

management under SLR

S= breeding population

Y={0m, 1m,2m}; //uncertain

Belieft=[b(0m), b(1m), b(2m)]

bt=[1/3, 1/3, 1/3];

bt+1=[0.4, 0.2, 0.2];
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Bayes’ rule is the underlying mechanism for learning in 
all AM problems

P(B|A)=P(A|B)P(B)/P(A)
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𝑏𝑡+1 𝑦 𝑠𝑡 , 𝑎𝑡, 𝑠𝑡+1, 𝑏𝑡 =
P𝑦 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝑏𝑡 𝑦

σ𝑦∈𝑌 𝑏𝑡 𝑦 P𝑦 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡
.

where P𝑦 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 is the state transition probability assuming that the true model is y. 

The discrete belief value 𝑏𝑡 𝑦 is interpreted as the probability that y best describes system 
dynamics of the available models.



Choice of sufficient statistics influences 
the AM optimisation approach

For problems with 
hidden variables that can 
take finite values:

▪ belief states are 
widely used sufficient 
statistics. 

Belief states are 
probability distributions 
over finite quantities and 
can be updated using 
Bayes’ theorem. 
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Does the uncertain variable (parameter or model) 
take finite number of values?

yes

no

Augment state space with the sufficient 
statistic belief states over the finite values of 
the uncertain variable

Solve active adaptive management problem 
using discretized belief MDP or POMDP

Solve passive adaptive 
management problem 

using MDP



Finding sufficient 
statistics?

For problems with hidden 
variables that can take 
infinite values:

▪ sufficient statistics that 
take finite values facilitate 
the use of fast and 
accurate solution 
methods. 
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Does the uncertain variable (parameter or model) 
take finite number of values?

yes

no

Augment state space with the 
sufficient statistic belief states over 
the finite values of the uncertain 
variable

Solve active adaptive management problem 
using discretized belief MDP or POMDP

Solve passive adaptive 
management problem 

using MDP

Can the history of 
observations and 
actions be represented 
using a sufficient 
statistic? 

no

yes

Discretize
uncertain
variable into 
finite number 
of values

Does the sufficient 
statistic take finite
values?

Solve active adaptive 
management
problem using MDP

Discretize
sufficient 
statistic’s
values 

yes

no



Bayes rule for infinite values
• The distribution bt(θ) represents the values of parameter θ at time t as a probability 

density function: “belief in θ”

• Observing the system response to management actions between times t and t + 1 
provides information that can be used to update this belief. 

• Bayes’ theorem provides a means of updating distribution bt(θ) as the system is 
managed (at) in a given configuration (st) and data are gathered (st+1):
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P𝜃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 is the state transition probability assuming that the true parameter 
value is θ. Useful sufficient statistics for 𝒃𝒕 𝜽 can be found when 𝒃𝒕 𝜽 is a conjugate 
prior for P𝜽 𝒔𝒕+𝟏 𝒔𝒕, 𝒂𝒕 .

𝑏𝑡+1 𝜃 𝑠𝑡 , 𝑎𝑡, 𝑠𝑡+1, 𝑏𝑡 =
P𝜃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝑏𝑡 𝜃

𝜃׬ P𝜃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡, 𝜃 𝑏𝑡 𝜃 𝑑𝜃
,



Beta distribution with binomial updating is a must try …

• Uncertain parameter p in [0,1] e.g. management 
success, rate.

• Uncertainty surrounding p can be represented as 
a beta distribution. 

• Given a Beta(∝, β) prior for p, the posterior is a 
beta distribution with new parameters ∝ + R 
(number of successes) and β+N-R (number of 
failures).

• Consequently, ∝ and β can be used as sufficient 
statistics. 

• The transition probabilities are derived for all 
possible value of ∝ and β. 

• The optimal policy matches an action to a 
population size and values of ∝ and β. 
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Domain Objective Uncertain parameter

Forestry, 

Conservation 

(McCarthy and 

Possingham 2007; 

Moore and 

McCarthy 2010)

Maximize the 

expected number of 

successes over a 

specified number of 

time periods

Probability of success 

of management action 

defined as Beta 

distribution with 

binomial updating

Fisheries (Hauser 

and Possingham 

2008)

Maximum long-term 

fish stock harvest 

Recovery rate after 

stock collapse, modeled 

as a Beta distribution 

with binomial updating

Conservation, 

translocation (Rout 

et al. 2009)

Translocation of 

threatened species, 

choosing between 

introducing to two 

sites

Mortality rate at one 

site  represented as 

Beta distribution with 

binomial updating
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Examples of discrete conjugate distributions and sufficient statistics with potential 
for use in adaptive management with parameter uncertainty (Chades et al 2017). 

Data updating 

process

Uncertai

n 

paramet

er

Conjugate Prior 

distribution  and 

sufficient statistics 

Posterior distribution and update 

of sufficient statistics

Posterior predictive

Binomial 

x ~ Bin(n,p)

p p ~ Beta(a, b) p’ ~ Beta(a+x, b+n-x) Beta-Binomial

x ~ BetaBin(n, a, b)

a a → a+x

b b → b+n-x

Negative Binomial

x ~ NB(r, p)

p p ~ Beta(a, b) p' ~ Beta(a+x, b+r)
𝑃𝑟 𝑋 = 𝑥 =

𝑥 + 𝑟 − 1
𝑥

𝐵 𝛼+𝑥,𝛽+𝑟

𝐵 𝛼,𝛽

a a → a+x

b b → b+r

x ~ Poisson(l) l 𝜆~Gamma(k,θ) 𝜆′~Gamma 𝑘 + 𝑥,
𝜃

1+𝜃

Negative Binomial

𝑥~𝑁𝐵 𝑘,
𝜃

1+𝜃

k k → k + x

𝜃 𝜃 →
𝜃

1+𝜃

x ~ Geometric(p) p p ~ Beta(a, b) p' ~ Beta(a+1, b+x)
Pr 𝑋 = 𝑥 =

𝐵 𝛼+1,𝛽+𝑥

𝐵 𝛼,𝛽

a a → a+1

b b → b+ x
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Some continuous conjugate distributions and sufficient statistics with potential for 
use in adaptive management with parameter uncertainty (Chades et al 2017). 
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Data updating 

process

Uncertain 

parameter

Conjugate Prior 

distribution and sufficient 

statistics

Posterior distribution and update of 

sufficient statistics

Posterior predictive

Normal

x ~ N(𝜇, 𝜎2)

𝜇 m ~ N(μ0, σ0
2)

𝜇′~𝑁
𝜇0𝜎

2+𝑥𝜎0
2

𝜎2+𝜎0
2 ,

𝜎2𝜎0
2

𝜎2+𝜎0
2

𝑥~𝑁 𝜇0, 𝜎
2 + 𝜎0

2

μ0 𝜇0 →
𝜇0𝜎

2+𝑥𝜎0
2

𝜎2+𝜎0
2

σ0
2

𝜎0
2 →

𝜎2𝜎0
2

𝜎2+𝜎0
2

Normal

x ~ N(𝜇, 𝜎2)

𝜎2 𝜎2 ~ InvGamma α, β 𝜎2 ′~InvGamma ቀ

ቁ

𝛼 + 1, 𝛽 +

𝑥−𝜇 2

2

𝑓 𝑥 =
1

2𝜋

𝛼

𝛽

2𝛽

𝑥−𝜇 2+2𝛽

𝛼+1

α 𝛼 → 𝛼 + 1

β
𝛽 → 𝛽 +

𝑥−𝜇 2

2

Exponential

x ~ exp(l)

l l ~ Gamma(a, b) 𝜆′~Gamma 𝛼 + 𝑛, 𝛽 + σ𝑖=1
𝑛 𝑥𝑖 𝑓 𝑥 =

Γ 𝛼+𝑛

Γ 𝛼

𝛽𝛼

(𝛽+ σ𝑖=1
𝑛 𝑥𝑖)

𝛼+𝑛

α 𝛼 → 𝛼 + 𝑛

β 𝛽 → 𝛽 + σ𝑖=1
𝑛 𝑥𝑖



Conclusion
• Learn uncertain quantities using 

sufficient statistics and applying 
Bayes’ theorem;

• Find the optimal adaptive 
management strategy by 
augmenting the state space with 
sufficient statistics and stochastic 
dynamic programming;

24 |

R. Bellman

Stochastic dynamic 
programming

manage

monitor

objective 

learn

Bayes theorem 



Session 5: 
• Solving AM under 

model uncertainty

Session 6:
• Solving AM under 

parameter uncertainty
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Does the uncertain variable (parameter or model) 
take finite number of values?

yes

no

Augment state space with the 
sufficient statistic belief states over 
the finite values of the uncertain 
variable

Solve active adaptive management problem 
using discretized belief MDP or POMDP

Solve passive adaptive 
management problem 

using MDP

Can the history of 
observations and 
actions be represented 
using a sufficient 
statistic? 

no

yes

Discretize
uncertain
variable into 
finite number 
of values

Does the sufficient 
statistic take finite
values?

Solve active adaptive 
management
problem using MDP

Discretize
sufficient 
statistic’s
values 

yes

no



Additional material and references:
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