
Recap Day 2 and intro to Day 3
• Day 2:

• How to optimise sequential decision-
making:

– Markov Decision processes

– MDPSolve

• How to learn:

– Sufficient statistics;

– Model uncertainty: finite, belief.

– Parameter uncertainty: 
infinite/discrete
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Recap Day 2 and intro to Day 3
• Day 3:

• Adaptive management model 
uncertainty (finite values)

• Breakout session

• Adaptive management parameter 
uncertainty (infinite values)
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Session 5 – Discrete model adaptive management

▪ Introduction to model AM

▪ Key elements

▪ AM for model uncertainty as a Markov decision process

▪ Gouldian Finch problem

▪ Discussion

▪ MDPsolve (Paul)
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In many domains, we do not have access to the dynamics 
but still need to make decisions

Adaptive management provides a solution. Adaptive management is “learning 
by doing”. Decisions are selected to achieve a management objective while 
simultaneously gaining information to improve future management outcomes 
(Walters and Hilborn 1976).

manage

monitor

learn

objective



1) Parameter uncertainty: 
e.g. survival, growth, probability of success

~ hidden variable takes infinite # values

1) Model uncertainty:
e.g. competing scenarios, Sea Level Rise, 
expert opinions

~ hidden variable takes finite # values

Adaptive management deals with two types of uncertainty

decisiont

statet statet+1

Don’t knowt
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Session 5: 
• Solving AM under 

model uncertainty

Session 6:
• Solving AM under 

parameter uncertainty
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Does the uncertain variable (parameter or model) 
take finite number of values?

yes

no

Augment state space with the 
sufficient statistic belief states over 
the finite values of the uncertain 
variable

Solve active adaptive management problem 
using discretized belief MDP or POMDP

Solve passive adaptive 
management problem 

using MDP

Can the history of 
observations and 
actions be represented 
using a sufficient 
statistic? 

no

yes

Discretize
uncertain
variable into 
finite number 
of values

Does the sufficient 
statistic take finite
values?

Solve active adaptive 
management
problem using MDP

Discretize
sufficient 
statistic’s
values 

yes

no
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R. Bellman

Stochastic dynamic 
programming

manage

monitor

learn

objective 

Bayes theorem 

Active adaptive management provides the best actions 
given our current knowledge … AND what we will learn in 
the future

Optimal but
difficult to solve

Active management 
requires ‘thinking 
ahead’ and calculating 
the consequences of 
all possible values of 
the unknown 
information before 
deciding the optimal 
action. 



History

• AM tools to reduce model uncertainty were first 
proposed in the fisheries literature as early as 1978 
(Silvert 1978), and included in (Walters 1986). 

• In the mid-1990s, AM under model uncertainty was 
implemented by the US Fish and Wildlife Service to set 
harvest quotas for mallards in the USA (Johnson et al. 
1997; Nichols et al. 1995)

• Plethora of other AM studies designed to reduce 
model uncertainty in conservation and resource 
management (Johnson et al. 2002; Martin et al. 2009; 
McDonald-Madden et al. 2010b; Moore and Conroy 
2006; Smith et al. 2013; Williams 2011a) + more
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Key points to design an AM for model uncertainty

• Plausible alternative hypotheses (models) about 
system function can be articulated:

𝑌 = 𝑚𝑜𝑑𝑒𝑙1,𝑚𝑜𝑑𝑒𝑙2

• The models can take many forms, so long as the 
transition probabilities between states can be 
computed under each possible model.

y ∈ 𝑌, P𝑦 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 = 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑦, 𝑎𝑡)
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Key points to design an AM for model uncertainty

• We use belief states as sufficient statistics. Belief states are probability 
distribution over states

𝑏 = 𝑏 𝑚𝑜𝑑𝑒𝑙1 , 𝑏 𝑚𝑜𝑑𝑒𝑙2

• Optimal decisions depend on an observable state and belief. 

• A policy is defined as:  : S, b→ A. 

• Augment the state space:  𝑆 x 𝐵(𝑌)

• Finding the best action:

▪ Solve an MDP with a continuous belief state space (Belief MDP, today).

▪ Solve a POMDP (day 4)
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MDP                 vs belief MDP
• States S

• Actions A

• Transition matrices 
𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

• Reward function  𝑅(𝑠𝑡 , 𝑎𝑡)

• Discount factor 

• Optimal policy 𝜋∗: 𝑆 → 𝐴

• Value function 𝑉𝜋(𝑠)
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• States S x B(Y)

• Actions A

• Transition matrices 
𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑦𝑡, 𝑎𝑡)

• Reward function 𝑅 𝑠𝑡 , 𝑎𝑡
• Discount factor 

• Optimal policy 𝜋∗: 𝑆, 𝐵 → 𝐴

• Value function 𝑉𝜋(𝑠, 𝑏)



MDP                 vs belief MDP
• Optimal policy 𝜋∗: 𝑆 → 𝐴

• Optimal value function 𝑉𝜋(𝑠)
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• Optimal policy 𝜋∗: 𝑆, 𝐵 → 𝐴

• Optimal value function 
𝑉𝜋∗(𝑠, 𝑏)

𝑉∗ 𝑠𝑡 , 𝑏𝑡

=
max
𝑎 ∈ 𝐴

෍

𝑦∈𝑌

𝑏𝑡 𝑦 𝑟 𝑠𝑡 , 𝑎

Expected immediate reward given 𝑠𝑡, 𝑎 and 𝑏𝑡

+
ณ𝛾

Discount factor

෍

𝑠t+1
future states

෍

𝑦∈𝑀

𝑏𝑡 𝑦 P𝑦 𝑠𝑡+1 𝑠𝑡 , 𝑎

Transition probability given 𝑠𝑡, 𝑎 and 𝑏𝑡

𝑉∗ 𝑠𝑡+1, 𝑏𝑡+1
𝑎,𝑠𝑡+1

Optimal value in 𝑠𝑡+1 and 𝑏𝑡+1

Expected future discounted reward



MDP                 vs belief MDP
• Optimal policy 𝜋∗: 𝑆 → 𝐴

• Optimal value function 𝑉∗𝜋(𝑠)
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• Optimal policy 𝜋∗: 𝑆, 𝐵 → 𝐴

• Optimal value function 𝑉𝜋∗(𝑠, 𝑏)

V(s1,b)

V(s2,b)

V(s1)= 1
V(s2)= 2

1

2

2.5

1.5

V(s1)= 2.5
V(s2)= 1.5

Model 1 Model 2

b(Model 1) =1-b(Model 2)

0 1
b(Model 2)



From belief MDP to discretized belief MDP
• Continuous MDPs are 

computationally hard to solve 
and approximate solution 
techniques must be used to 
derive solutions. 

• A natural way to overcome this 
limitation is to discretize the 
continuous belief state space 
and solve a discrete state MDP.  
(Paul)
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Passive adaptive management is solving an MDP given a 
fix bt(y)

• Optimal policy 𝜋∗: 𝑆 → 𝐴

• Optimal value function 𝑉𝜋(𝑠)
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𝑉∗ 𝑠𝑡

=
max
𝑎 ∈ 𝐴

෍

𝑦∈𝑌

𝑏𝑡 𝑦 𝑟 𝑠𝑡 , 𝑎

Expected immediate reward given 𝑠𝑡, 𝑎 and 𝑏𝑡

+
ณ𝛾

Discount factor

෍

𝑠t+1
future states

෍

𝑦∈𝑀

𝑏𝑡 𝑦 P𝑦 𝑠𝑡+1 𝑠𝑡 , 𝑎

Transition probability given 𝑠𝑡, 𝑎 and 𝑏𝑡

𝑉∗ 𝑠𝑡+1
Optimal value in 𝑠𝑡+1

Expected future discounted reward



Maximise the “High” persistence state of a Gouldian finch population 
over time

time

Do 
nothing

Low High

Low 0.94 0.06

High 0.5 0.5

From

To

Low
Hig
h

0.94
0.06

0.5

0.5

Transition matrix for each action

Low Low High Low
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An optimal solution gives the best action to perform in each state
Same cost for each action.

Do 
nothing

Low High

Low 0.94 0.06

High 0.5 0.5

Fire
Grazing

Low High

Low 0.58 0.42

High 0.45 0.55

Cats Low High

Low 0.62 0.38

High 0.41 0.59

From

Nesting 
box

Low High

Low 0.73 0.27

High 0.47 0.53

To

From

From

From

Low High

Optimal solution represented as a policy graph:
Fire/Grazing
0.58 Fire/ Grazing

0.42

Cats
0.59

Cats 
0.41
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It is rare to know the efficiency of actions when managing endangered 
species

?

? ?

?
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That’s where adaptive management becomes useful

We can define/elicit a set of plausible models 

We assume that the REAL model is one of these 
models.  
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We are uncertain about which model is the real model but we can 
observe the state perfectly

Nesting
box

Low High

Low 0.94 0.06

High 0.5 0.5

Cats Low High

Low 0.94 0.06

High 0.5 0.5

Fire/ 
grazing

Low High

Low 0.94 0.06

High 0.5 0.5

Do 
nothing

Low High

Low 0.94 0.06

High 0.5 0.5

Expert 1 Expert 2 Expert 3 Expert 4

Nesting
box

Low High

Low 0.94 0.06

High 0.5 0.5

Cats Low High

Low 0.94 0.06

High 0.5 0.5

Fire/ 
grazing

Low High

Low 0.94 0.06

High 0.5 0.5

Do 
nothing

Low High

Low 0.94 0.06

High 0.6 0.4

Nesting
box

Low High

Low 0.94 0.06

High 0.5 0.5

Cats Low High

Low 0.94 0.06

High 0.5 0.5

Fire/ 
grazing

Low High

Low 0.94 0.06

High 0.5 0.5

Do 
nothing

Low High

Low 0.84 0.16

High 0.2 0.8

Nesting
box

Low High

Low 0.94 0.06

High 0.5 0.5

Cats Low High

Low 0.94 0.06

High 0.5 0.5

Fire/ 
grazing

Low High

Low 0.94 0.06

High 0.5 0.5

Do 
nothing

Low High

Low 0.9 0.1

High 0.5 0.5

We asked 4 anonymous experts to provide their state 
transition model.
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We use belief state to represent “where we think we are” at anytime.

Expert 1 Expert 2 Expert 3 Expert 4

0.25 0.25 0.25 0.25

What is the best conservation action to perform for every 
combination of state of the species and belief in models to 
maximize a species abundance?

0.1 0.15 0.65 0.1

bt(y)

bt+1(y)
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What are the best conservation actions to perform when expert 3 is the true 
model?

manage

monitor

learn



• Convenient sufficient statistics 
may not exist distinguish 
between a small number of 
values of a single parameter 
(McDonald-Madden et al. 
2010b; Moore et al. 2011; 
Runge 2013)

• Multiple parameters are 
uncertain and key hypotheses 
need to be tested, model 
uncertainty is currently the only 
tractable approach (Williams 
2009) (Moore et al. 2008).

Discrete approach is also be 
relevant for parameter uncertainty
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Does the uncertain variable (parameter or model) 
take finite number of values?

yes

no

Augment state space with the 
sufficient statistic belief states over 
the finite values of the uncertain 
variable

Solve active adaptive management problem 
using discretized belief MDP or POMDP

Solve passive adaptive 
management problem 

using MDP

Can the history of 
observations and 
actions be represented 
using a sufficient 
statistic? 

no

yes

Discretize
uncertain
variable into 
finite number 
of values

Does the sufficient 
statistic take finite
values?

Solve active adaptive 
management
problem using MDP

Discretize
sufficient 
statistic’s
values 

yes

no



Important caveats
• One of the candidate models must be close to the true 

model (sub-optimal). 

• The computational complexity is proportional to the 
number of models.

• Objective is to maximise the expected sum of rewards not 
finding out which model is true.

• Value of information: Models must be different enough to 
require alternative optimal management strategies (and 
outcomes). Selecting the minimum set of models?

• Markov property (delayed benefits, complex life cycles). 

• Interpretation, explanation and communication!
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