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Example – Pests revisited (see Simple_pestsAM1.m) 
Recall that: 

    Pests are classified into 3 levels: low, medium and high: 𝑆 ∈ {1,2,3} (so #𝑆 = 3) 

   The site can be left alone or treated: 𝐴 ∈ {0,1} (so #𝐴 = 2) 

   Damage costs are 𝐷 = [0;  5;  20] for the 3 states 

   Treatment cost is 𝐶 = 10 

   The discount factor is 𝛿 = 0.95 

There are 6 possible state/action combinations (#𝑋 = 6) 

With action (𝐴) first (very important to keep ordering consistent) this is 

         𝑋 =

[
 
 
 
 
 
0 1
0 2
0 3
1 1
1 2
1 3]

 
 
 
 
 

 

The reward function can be written as 𝑅 = −[𝐷;𝐷 + 𝐶] (this is a #𝑆 × #𝐴 matrix) 

Written as the negative of cost (recall that we are maximizing) 

  



Transition Probabilities 

Probabilities with no action remains the same 

           𝑃0 = [
0.65 0.15 0.05
0.25 0.40 0.20
0.10 0.45 0.75

] 

Probabilities with treatment are not well known 

Suppose we have a pessimistic and an optimistic assessment: 

 

         𝑃1𝑝 = [
0.7 0.25 0.15
0.3 0.45 0.30
0 0.30 0.50

]  

 

         𝑃1𝑜 = [
1 0.75 0.65
0 0.25 0.30
0 0 0.05

]  

 

  



Discrete Belief Grids 

A belief state with 𝑚 alternative models is an 𝑚 vector of non-negative numbers that sum to 1 

For example: [0.25 0.5 0.25] 

A discretization of the belief state is a grid of values with each row satisfying the summing up condition 
 

[
 
 
 
 
 

0 0 1
0 0.5 0.5
0 1 0

0.5 0 0.5
0.5 0.5 0
1 0 0 ]

 
 
 
 
 

 

MDPSolve has a function simplexgrid that creates such a grid. 

The syntax b=simplexgrid(cat,inc,sum) produces 

an evenly spaced grid of values on a simplex for cat variables  

each variable has inc+1 values and  

the values on each row sum to sum.  

The above example is obtained using b=simplexgrid(3,2,1) 

Note that the grid values are arranged in lexicographic order (this is important for correct interpretation). 



Using amdp 

The MDPSolve function  facilitates the specification of discrete AM models 

The basic syntax is  
Ix = getI(X,svars);  

[b,Pb,Rb,Sb,Xb,Ixb ]=amdp(inc,P,R,S,X,Ix); 
model = struct('P',Pb,'R',Rb,’Ix’,Ixb,'d',delta); 

results = mdpsolve(model);  

In contrast to an ordinary MDP model here we define P as a cell array with 𝑚 transition matrices 

In our example we have P = {[P0 P1p],[P0 P1o]}; 

amdp also uses the index vector Ix = getI(X,svars); 

It can also be useful to solve each of the alternative models separately as ordinary MDPs 

 Optimal action Value 

𝑆 pessimistic optimistic pessimistic optimistic 

low 0 0 -221.8 -113.5 

medium 0 1 -236.7 -125.8 

high 0 1 -261.0 -142.7 

With the pessimistic assessment we give up – it is not worth treating 
With the pessimistic assessment we treat in both the medium and high population levels 



Solution to the pest problem 

The optimal action is to treat on both the medium and high population states unless we have strong belief in the pessimistic 
model (𝑏1 ≥ 0.77 for 𝑆 = 2 and 𝑏1 ≥ 0.97 for 𝑆 = 3)  

The value function is plotted on the right: value declines as the state increase and as 𝑏1 increase (hopefully this in intuitive) 

  
 

  



Caveats 

The discrete AM framework here defines alternative models using alternative transition matrices  
and updates beliefs using only the new state values as information 

Another possibility is that the response of performance variables are uncertain 

Martin, et al. considered a case in which  
the fledging success of oystercatchers was a performance variable 
the state was the size of the predator population and  

the uncertainty was the response of fledging success to the predator population 

Other information might also be useful 

Suppose that we are uncertain about fecundity; direct observations on young per parent is more informative than overall 
future population which might involve uncertainty about survival and harvest 


