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The Choice of Discrete or Continuous Random
Variables with a Discrete or Continuous Index

Set Defines the Type of Stochastic Model.

Discrete Time Markov Chain (DTMC): n ∈ {0, 1, 2, . . .}, Xn is a
discrete random variable. The term chain implies that the random
variable is discrete.

Xn ∈ {0, 1, . . . , N} or {0, 1, . . .}

Continuous Time Markov Chain (CTMC): t ∈ [0,∞), X(t) is a
discrete random variable.

X(t) ∈ {0, 1, . . . , N} or {0, 1, . . .}

Diffusion Process, Stochastic Differential Equation (SDE): t ∈ [0,∞),
X(t) is a continuous random variable.

X(t) ∈ [0, N ] or [0,∞)
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Part I:
Discrete-Time Markov Chains

Notation and Terminology

Discrete random variable: Xn, n ∈ {0, 1, 2, . . .} with state space

{0, 1, 2, . . . , N} or {0, 1, 2, . . .}.

Markov property:

Prob{Xn = in|X0 = i0, . . . , Xn−1 = in−1}

= Prob{Xn = in|Xn−1 = in−1}.

Probability mass function of Xn: {pi(n)}∞i=0, where

pi(n) = Prob{Xn = i}.
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Transition Matrix

One-step transition probability:

pji(n) = Prob{Xn+1 = j|Xn = i}.

Stationary or Homogeneous Transition Probabilities:

pji(n) ≡ pji

Transition matrix:

P =


p11 p12 p13 · · ·
p21 p22 p23 · · ·
p31 p32 p33 · · ·

... ... ...

 .
Column sum is one,

∑
j pji = 1, a stochastic matrix.

Assume the transition probabilities are homogeneous.
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n−Step Transition Matrix

n− Step transition probabilities:

p
(n)
ji = Prob{Xn = j|X0 = i}.

n-step transition matrix

P (n) =
(
p

(n)
ji

)
= Pn

Irreducible if only one communication class; otherwise reducible.

Irreducible and periodic:

P =

0BBBBB@
0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
... ... · · · ... ...
0 0 · · · 1 0

1CCCCCA .
 1  2  3 N
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First Passage Time and Recurrent Chains

First return to state i is at the nth time step:

f
(n)
ii = Prob{Xn = i,Xm 6= i,m = 1, 2, . . . , n− 1|X0 = i}.

Transient state i:
∞P
n=1

f
(n)
ii < 1 Recurrent state i:

∞P
n=1

f
(n)
ii = 1.

State i recurrent (transient) iff

∞X
n=0

p
(n)
ii =∞ (<∞).

Mean recurrence time:

µii =
∞X
n=1

nf
(n)
ii .

Positive recurrent: µii <∞. Null recurrent: µii =∞.
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Summary of Classification Schemes

Markov chains or classes can be classified as

Periodic or Aperiodic

Then further classified as

Transient or Recurrent

Then recurrent MC can be classified as

Null recurrent or Positive recurrent.
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Infinite Random Walk is Transient if p 6= q and

Null Recurrent if p =
1

2
= q.

The chain is irreducible and periodic of period 2.

   

-2 -1  0  1  2

p =probability moving right, q =probability moving left, p+ q = 1.

p
(2n+1)
00 = 0 for n = 0, 1, 2, . . . .

p
(2n)
00 =

(2n)!

n!n!
pnqn ∼

(4pq)n
√
πn

.

Transient: p 6= q, 4pq < 1,
∞∑
n=0

p
(2n)
00 <∞

Null Recurrent: p =
1

2
= q, 4pq = 1,

∞∑
n=0

p
(2n)
00 = ∞, p

(2n)
00 → 0,

µ00 =∞
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Finite DTMC

In finite DTMC, there are NO null recurrent states and not all states
are transient. An irreducible MC is

Periodic or Aperiodic

Positive Recurrent

A stationary probability distribution, π is an eigenvector of P with
eigenvalue one:

Pπ = π

lim
n→∞

Pnp(0) = π.

Example: Transition Matrix: P =
(

1/2 1/3
1/2 2/3

)
. Stationary

probability distribution: Pπ = π, where

π = (2/5, 3/5)T .

Mean recurrence times: µ11 = 5/2 and µ22 = 5/3.

L. J. S. Allen Texas Tech University



Biological Application of DTMCs

(1) Proliferating Epithelial Cells [Matlab program]

(2) Restricted Random Walk [Matlab program]

(3) Simple Birth and Death Process

(4) SIS Epidemic Process [Matlab Program]
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(1) Proliferating Epithelial Cells

Figure 1: Cell division results in two new vertices and three new sides per cell.

Proliferating epithelial cells in animal tissues have a polygonal
shape with most cells being hexagonal (six-sided). An infinite MC is
approximated by a finite positive recurrent MC to show the highest
probability among all of the polygonal shapes is six-sided.

Gibson et al. 2006 Nature
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First Step Transition Matrix

A single cell has sn sides. Each daughter receives at least two sides
from the parent, leaving sn − 4 for daughter cells. Let rn+1 be
the number of sides distributed to each daughter cell, uniformly and
randomly according to b(sn − 4, 1/2).

Prob{2 + rn+1 = j|sn = i} = pj,i =
(
i− 4
j − 4

)
1

2i−4
.

First step transition matrix:

M =


1 1/2 1/4 1/8 1/16 · · ·
0 1/2 1/2 3/8 1/4 · · ·
0 0 1/4 3/8 3/8 · · ·
0 0 0 1/8 1/4 · · ·
0 0 0 0 1/16 · · ·
... ... ... ... ... ...

 .

L. J. S. Allen Texas Tech University



Second Step Transition Matrix

Each neighbor gains one side after cell division because a new junction
is created. Second step transition matrix:

S =


0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
... ... ... ... ...

 , SM =


0 0 0 0 0 · · ·
1 1/2 1/4 1/8 1/16 · · ·
0 1/2 1/2 3/8 1/4 · · ·
0 0 1/4 3/8 3/8 · · ·
0 0 0 1/8 1/4 · · ·
... ... ... ... ... ...

 .

Then p(n+ 1) = SMp(n) = Pp(n),

P = SM

Transient class: {4}. Recurrent class: {5, 6, . . .}.
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Approximate Truncated Transition Matrix is a
Stochastic Matrix

Matrix P is truncated to an m ×m matrix; the truncated matrix is
not a stochastic matrix. Approximating the entries to four decimal
places yields a stochastic matrix of dimension m × m. The finite
Markov chain applied to the set {5, 6, . . . ,m} is positive recurrent.
The approximate stationary probability distribution for cells up to 10
sides, (5, 6, . . . , 10) is

(0.2888, 0.4640, 0.2085, 0.0359, 0.0027, 0.0001)T .

The largest proportion of cells are hexagonal in shape. In addition, the
expected value of π is E(π) = 6.

See the MatLab program.
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(2) Random Walk on {0, 1, . . . , N} or
Gambler’s Ruin

 0  1   2 N

Figure 2: Movement right has probability p; movement left has probability q.

Absorbing boundaries, {0}, {N} are recurrent states and
{1, 2, . . . , N − 1} are transient.
Transition matrix:

P =



1 q 0 · · · 0 0 0
0 0 q · · · 0 0 0
0 p 0 · · · 0 0 0
0 0 p · · · 0 0 0
... ... ... · · · ... ... ...
0 0 0 · · · p 0 0
0 0 0 · · · 0 p 1


=

1 A 0
0 T 0
0 B 1

 ,

where T is an N − 1×N − 1 matrix of transient states.
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Probability of Absorption

ak = probability of reaching state 0 from state k
bk = probability of reaching state N from k:

ak = pak+1 + qak−1

−qak−1 + ak − pak+1 = 0

a0 = 1, aN = 0. Expressed in matrix form:

aD = c

where a = (a0, a1, . . . , aN), c = (1, 0, . . . , 0), and

D =

0BBBBBBB@

1 −q 0 0 · · · 0 0
0 1 −q 0 · · · 0 0
0 −p 1 −q · · · 0 0
... ... ... ... ... ... ...
0 0 0 0 · · · 1 0
0 0 0 0 · · · −p 1

1CCCCCCCA
=

0@1 −A 0
0 I − T 0
0 −B 1

1A .

a = cD−1
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An Explicit Solution for the Probability of
Absorption (Extinction)

An explicit solution is

ak =


(q/p)N − (q/p)k

(q/p)N − 1
, p 6= q

N − k
N

, p = q

Let N →∞.

ak =


1, p ≤ q(
q

p

)k
, p > q

Table 1: Let k = 50 and N = 100
Prob. a50 b50 τ50

q = 0.50 0.5 0.5 2500
q = 0.51 0.880825 0.119175 1904
q = 0.55 0.999956 0.000044 500
q = 0.60 1.00000 0.00000 250
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Three Sample Paths
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Figure 3: N = 100, q = 0.55, k = 50
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Expected Time Until Absorption (Extinction)

τk = E(Tk) expected time until absorption beginning from state k.

τk = p(1 + τk+1) + q(1 + τk−1)

−pτk−1 + τk − qτk=1 = 1

In matrix form:
τ (I − T ) = (1, 1, . . . , 1)

τ = (1, 1, . . . , 1)(I − T )−1

Table 2: Let k = 50 and N = 100
Prob. a50 b50 τ50

q = 0.50 0.5 0.5 2500
q = 0.51 0.880825 0.119175 1904
q = 0.55 0.999956 0.000044 500
q = 0.60 1.00000 0.00000 250
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(3) Simple Birth and Death Process

The probability of a birth or a death is not constant but depends
on the size of the population. Let Xn, n = 0, 1, 2, . . . denote the size
of the population. The birth and death probabilities are bi and di for a
population of size i, b0 = 0 = d0, bi, di ≥ 0, for i = 1, 2, . . .. During
the time interval ∆t, n→ n+ 1, at most one event occurs, either a
birth or a death. Assume

pji = Prob{Xn+1 = j|Xn = i}

=


bi, if j = i+ 1
di, if j = i− 1
1− (bi + di), if j = i
0, if j 6= i− 1, i, i+ 1

for i = 1, 2, . . ., p00 = 1. The probabilities bi ≡ bi(∆t) and
di = di(∆t) depend on the time interval ∆t.
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The Transition Matrix for a Birth and Death
Process

The transition matrix P has the following form:
1 d1 0 · · ·
0 1− (b1 + d1) d2 · · ·
0 b1 1− (b2 + d2) · · ·
0 0 b2 · · ·
... ... ... ...

 =
(

1 A
0 T

)
.

During the time interval ∆t, either the population size increases by
one, decreases by one, or stays the same size. This is a reasonable
assumption if the time interval is sufficiently small.

sup
i
{bi + di} ≤ 1
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Probability of Extinction

If bi = 0 for i ≥ N and di = 0 for i > N and bi, di > 0 elsewhere,
then the population size is finite. There are two communication classes,
{0} and {1, 2, . . . , N}. The first one is positive recurrent and the
second one is transient. There exists a unique stationary probability
distribution π, Pπ = π, where π0 = 1 and πi = 0 for i = 1, 2, . . . , N.
Eventually, population extinction occurs from any initial state:

lim
n→∞

Pnp(0) = π =


1
0
0
...
0

 .

But if bi, di > 0 for i = 1, 2, . . . , then the probability of extinction
may be less than one.
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When the Probability of Extinction equals One,
the Expected Time to Extinction Can be

Calculated.

Let τk = the expected time until extinction for a population with initial size k.

τk = bk(1 + τk+1) + dk(1 + τk−1) + (1− (bk + dk))(1 + τk)

−dkτk−1 + (bk + dk)τk − bkτk+1 = 1

and −dNτN−1 + dNτN = 1. This can be expressed in matrix form:

τD = c

where τ = (τ0, τ1, . . . , τN), c = (0, 1, . . . , 1), and D is0BBBBB@
1 −d1 0 0 · · · 0 0
0 b1 + d1 −d2 0 · · · 0 0
0 −b1 b2 + d2 −d3 · · · 0 0
... ... ... ... ... ... ...
0 0 0 0 · · · 0 dN

1CCCCCA =
„

1 −A
0 I − T

«
.

τ = cD−1

L. J. S. Allen Texas Tech University



An Example of a Simple Birth and Death
Process with N = 20.

Suppose the maximal population size is N = 20, where the birth
and death probabilities are linear: bi ≡ 0.03i∆t, for i = 1, 2, . . . , 19,
di ≡ 0.02i∆t, for i = 1, 2, . . . , 20, ∆t = 1 a simple birth and death
process.
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b > d

Figure 4: Expected time until population extinction τ when the maximum
population size is N = 20, bi = 0.03i∆t, and di = 0.02i∆t.

If ∆t = 1 day, 6× 104 ≈ 160 years.
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(4) SIS Epidemic Model

     S
       I

Deterministic Model:

dS

dt
= −

β

N
IS + (b + γ)I

dI

dt
=
β

N
IS − (b + γ)I =

β

N
I(N − I)− (b + γ)I

S(t) = N − I(t), where N = constant total population size.

Basic Reproduction Number: R0 =
β

b+ γ

If R0 ≤ 1, then lim
t→∞

I(t) = 0.

If R0 > 1, then lim
t→∞

I(t) = N

(
1−

1

R0

)
> 0.
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SIS Epidemic Process

Since S(t) = N − I(t) and N is constant, only I(t) is modeled.

Let I(t) be the random variable for the number infectious at time
t = 0,∆t, 2∆t, . . . .

pi(t) = Prob{I(t) = i}, i = 0, 1, 2, . . . , N.

Transition Probabilities:

pji(∆t) = Prob{I(t+ ∆t) = j|I(t) = i}.
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Transition Probabilities

pji(∆t) =

8>>>>>><>>>>>>:

βi(N − i)
N

∆t, j = i + 1

(b + γ)i∆t, j = i− 1

1−
»
βi(N − i)

N
+ (b + γ)i

–
∆t, j = i

0, j 6= i + 1, i, i− 1.
Similar to a birth and death process:

pji(∆t) =

8>><>>:
b(i)∆t, j = i + 1
d(i)∆t, j = i− 1
1− [b(i) + d(i)]∆t, j = i

0, j 6= i + 1, i, i− 1.

 0  1  2 N

Recurrent class: {0} Transient class: {1, . . . , N}.

lim
t→∞

p0(t) = 1.
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Three Sample Paths
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Figure 5: Three sample paths of the DTMC SIS epidemic model are
graphed with the deterministic solution (dashed curve); ∆t = 0.01,
N = 100, β = 1, b = 0.25, γ = 0.25, and I(0) = 2.
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Probability Distribution
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Figure 6: Probability distribution of the DTMC SIS epidemic model.
∆t = 0.01, N = 100, β = 1, b = 0.25, γ = 0.25, I(0) = 2,
R0 = 2. Quasistationary distribution-conditioned on nonextinction,
(1/R0)2 = 0.25

See Matlab program.
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Part II:
Discrete-Time Branching Processes (BP)

Single-Type and Multi-Type BP

Single-Type BP: The term “single-type” refers to the fact that all
individuals are of one type such as the same gender, same cell type, or
same genotype or phenotype.

(1) Cell Cycles, Active and Quiescent

Multi-type BP: Instead of only one type, there are several types of
individuals. A population may be divided according to age, size, or
developmental stage, representing different types. In genetics, genes
may be classified as wild or mutant types.

(2) Age-Structured Population
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Single-Type Galton-Watson BP

In 1873, Galton sent a problem to the Educational Times regarding
the survival of family names. When he did not receive a satisfactory
answer, he consulted Watson, who rephrased the problem in terms
of generating functions. These types of problems are called Galton-
Watson BP.

Assumptions:

(i) Each individual in generation n gives birth to Y offspring of the same type, where
Y is a discrete random variable. Offspring probabilities:

pj = Prob{Y = j}, j = 0, 1, 2, . . . .

(ii) Each individual in the population gives birth independently of all other individuals.

(iii) The same offspring distribution applies to all generations.
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A Stochastic Realization or Sample Path of a BP

Let X0 = 1.

                                                                                   0

                                                                                   1

                                                                                   2

                                                                                   3

Figure 7: A sample path or stochastic realization of a branching
process {Xn}∞n=0. In the first generation, four individuals are born,
X1 = 4. The four individuals give birth to three, zero, four, and
one individuals, respectively, making a total of eight individuals in
generation 2, X2 = 8.
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Definition of Probability Generating Function

Probability generating function (pgf) of X

f(t) = E(tX) =
∞∑
j=0

pjt
j, some t ∈ R.

As the name implies, the pgf generates the probabilities associated
with the distribution

f(0) = p0, f ′(0) = p1, f ′′(0) = 2!p2.

Mean:

f
′(1) =

∞X
j=1

jpj = E(X) = m.
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PGF hn of the Galton-Watson BP Xn

Let the pgf of Xn be hn and the offspring pgf f(t) =
∑∞
k=0 pkt

k.

X0 = 1: h0(t) = t, h1(t) =
∑∞
k=0 pkt

k = f(t).

hn(t) = f(f(· · · (f(t)) · · · )) = fn(t).

X0 = N : h0(t) = tN , hn(t) = [fn(t)]N

                                                                                          0

                                                                                          1

                                                                                          2

                                                                                          3

L. J. S. Allen Texas Tech University



Extinction Theorem in Branching Processes.

Theorem 1. Assume X0 = N and the offspring distribution {pk}∞k=0
satisfies p0 > 0 and 0 < p0 + p1 < 1.

(i) If m ≤ 1, then

lim
n→∞

Prob{Xn = 0} = lim
n→∞

hn(0) = lim
n→∞

[fn(0)]N = 1

(ii) If m > 1, then there exists unique q < 1 such that f(q) = q

lim
n→∞

Prob{Xn = 0} = lim
n→∞

hn(0) = lim
n→∞

[fn(0)]N = q
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Extinction in Branching Processes.

The Galton-Watson BP is referred to as supercritical if m > 1,
critical if m = 1, and subcritical if m < 1.

If the process is subcritical or critical, then the probability of
extinction is certain.

But if the process is supercritical, then there is a positive probability,
1− qN , that the population will survive. As the initial population size
increases, the probability of survival also increases.

L. J. S. Allen Texas Tech University



(1) Cell Cycle: Active and Quiescent

Each cell after completing its life cycle, doubles in size, then divides
into two progeny cells of equal sizes. After cell division, some cells die,
some remain inactive or quiesce and some keep dividing or proliferating.

(1) Cell proliferation, probability p2

(2) Cell death, probability p0

(3) Cell quiescence, probability p1, p0 + p1 + p2 = 1.

                                                 Proliferating

                Proliferating   Dead       Quiescent            Proliferating  Dead     Quiescent

D

Kimmel and Axelrod, 2002
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The Cell Cycle is a Galton-Watson Process

Let Xn be the number of proliferating cells at time n. The offspring
pgf is

f(t) = (p0 + p1)2 + 2p2(p0 + p1)t+ p2
2t

2

= (p2t+ p0 + p1)2

The mean of the proliferating cells is

m = f ′(1) = 2p2.

If p2 ≤ 1/2, then with probability one the cell line will go extinct.
If p2 > 1/2 and X0 = 1, the probability of extinction is determined by
the fixed point q = f(q):

lim
n→∞

Prob{Xn = 0} =
(1− p2)2

p2
2

.
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Multi-type Galton Watson BP

A multi-type GWbp { ~X(n)}∞n=0 is a collection of vector random

variables ~X(n), where each vector consists of k different types,

~X(n) = (X1(n), X2(n), . . . , Xk(n)).

The offspring pgf of Xi is fi(t1, t2, . . . , tk). The mean number of
j-type offspring by an i-type parent is

mji =
∂fi(t1, t2, . . . , tk)

∂tj

∣∣∣∣
t1=1,t2=1,...,tk=1

.

Expectation matrix:

M =


m11 m12 · · · m1k

m21 m22 · · · m2k
... ... · · · ...

mk1 mk2 · · · mkk

 .
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Extinction Theorem for Multi-type
Galton-Watson BP

Theorem 2. Let the initial sizes for each type be Xi(0) = Ni,
i = 1, 2, . . . , k. Suppose the generating functions fi for each of the k
types are nonlinear functions of tj with some fi(0, 0, . . . , 0) > 0, the
expectation matrix M is regular, and λ is the dominant eigenvalue
of matrix M.
(i) If λ ≤ 1, then the probability of ultimate extinction is one,

lim
n→∞

Prob{ ~X(n) = ~0} = 1.

(ii) If λ > 1, then the probability of ultimate extinction is less than
one,

lim
n→∞

Prob{ ~X(n) = ~0} = qN1
1 qN2

2 · · · q
Nk
k ,

where (q1, q2, . . . , qk) is the unique fixed point of the k generating
functions fi(q1, . . . , qk) = qi and 0 < qi < 1, i = 1, 2 . . . , k.
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(2) Age-Structured Population

The number of females in k different age classes are modeled.
Type 1 represents newborn females.
A female of age i gives birth to r females with probability bi,r, then
survives, with probability pi+1,i to the next age i+ 1.
The mean number of female offspring by a female of age i is

bi = bi,1 + 2bi,2 + 3bi,3 + · · · .

Age k is the oldest age.

fi(t1, t2, . . . , tk) = [pi+1,iti+1 + (1− pi+1,i)]
∞∑
r=0

bi,rt
r
1,

i = 1, . . . , k − 1

fk(t1, t2 . . . , tk) = bk,0 + bk,1t1 + bk,2t
2
1 + · · · =

∞∑
r=0

bk,rt
r
1.
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Expectation Matrix is a Leslie Matrix

Expectation matrix:

M =


b1 b2 · · · bk−1 bk
p21 0 · · · 0 0
0 p32 · · · 0 0
... ... . . . ... ...
0 0 · · · pk,k−1 0

 ,

In demography, matrix M is known as a Leslie matrix.
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An Example with Two Ages or Stages.

Type 1 and Type 2

f1(t1, t2) = [(1/2)t2 + 1/2][1/2 + (1/6)t1 + (1/6)t21 + (1/6)t31]

f2(t1, t2) = 1/4 + (1/4)t1 + (1/4)t21 + (1/4)t31.

The mean number of offspring:

b1 = b1,1 + 2b1,2 + 3b1,3 = (1/6) + 2(1/6) + 3(1/6) = 1

b2 = b2,1 + 2b2,2 + 3b2,3 = (1/4) + 2(1/4) + 3(1/4) = 3/2.
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Expectation Matrix

Expectation matrix:

M =
(

1 3/2
1/2 0

)
has a dominant eigenvalue equal to λ = 3/2.

The fixed point of fi(q1, q2) = qi, i = 1, 2 is

(q1, q2) ≈ (0.446, 0.443).
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