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Part III:
Continuous-Time Markov Chains - CTMC

Notation and Terminology

Discrete random variable: X(t), t ∈ [0,∞), with values in

{0, 1, 2, . . . N} or {0, 1, 2, . . .}

Markov property:

Any sequence of real numbers 0 ≤ t0 < t1 < · · · < tn < tn+1,

Prob{X(tn+1) = in+1|X(t0) = i0, X(t1) = i1, . . . , X(tn) = in}

= Prob{X(tn+1) = in+1|X(tn) = in}.

Probability mass function of X(t): {pi(t)}∞i=0, where

pi(t) = Prob{X(t) = i}.
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Transition Matrix for the CTMC has Properties
similar to DTMC.

Transition probabilities:

pji(t, s) = Prob{X(t) = j|X(s) = i}, s < t

Stationary or Homogeneous Transition Probabilities:

pji(t, s) ≡ pji(t− s)

Generally, the transition matrix is a stochastic matrix,

∞X
j=0

pji(t) = 1

unless the process is explosive (blow-up in finite time).
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Forward and Backward Kolmogorov Differential
Equations.

Generator matrix
Q = P ′(0)

Forward Kolmogorov differential equations expressed in matrix form:

dP (t)

dt
= QP (t),

Backward Kolmogorov differential equations expressed in matrix form:

dP (t)

dt
= P (t)Q,

where P (t) = (pji(t)) is the matrix of transition probabilities and
Q = (qji) is the generator matrix.
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The Poisson Process

Assumptions in the Poisson process {X(t), t ∈ [0,∞)}:

(1) X(0) = 0.

(2) Infinitesimal probabilities:

pji(∆t) = Prob{X(t+ ∆t) = j|X(t) = i}

=


λ∆t+ o(∆t), j = i+ 1
1− λ∆t+ o(∆t), j = i
o(∆t), j ≥ i+ 2
0, j < i.

The probabilities depend only on the length of time ∆t.
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The Transition Matrix and Generator Matrix for
the Poisson Process.

P (∆t) =

0BBBBB@
1− λ∆t 0 0 · · ·
λ∆t 1− λ∆t 0 · · ·

0 λ∆t 1− λ∆t · · ·
0 0 λ∆t · · ·
... ... ... · · ·

1CCCCCA + o(∆t).

Note column sums of the matrix are one.

Q = P
′(0) =

0BBBBB@
−λ 0 0 · · ·
λ −λ 0 · · ·
0 λ −λ · · ·
0 0 λ · · ·
... ... ...

1CCCCCA .
Column sums of Q are zero.

Diagonal elements are nonpositive

Off-diagonal elements are nonnegative.
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Poisson Probabilities

Because X(0) = 0, it follows that pi0(t) = pi(t), dp/dt = Qp

dp0(t)
dt

= −λp0(t), p0(0) = 1

dpi(t)
dt

= −λpi(t) + λpi−1(t), pi(0) = 0, i ≥ 1.

The system can be solved sequentially

p0(t) = e
−λt
, p1(t) = λte

−λt
, p2(t) = (λt)2e

−λt

2!
.

Poisson probability distribution with parameter λt

pi(t) = (λt)i
e−λt

i!
, i = 0, 1, 2, . . . .

with mean and variance

m(t) = λt = σ
2(t).
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Waiting Times Between Jumps

The distinction between discrete versus continuous time Markov chains
is that in DTMC there is a “jump” to a new state at times 1, 2, . . . ,
but in CTMC the “jump” to a new state may occur at any time t ≥ 0.
The collection of random variables {Wi} denote the jump times or
waiting times and the times Ti = Wi+1 −Wi are referred to as the
interevent times.

                               T0                   T1               T2            T3

                  0        W1              W2     W3         W4      

Figure 1: One sample path of a CTMC, illustrating waiting times and
interevent times. The process is continuous from the right.
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An Example of an Explosive Process

If the waiting times approach a positive constant, W = sup{Wi},
while the values of the states approach infinity,

lim
i→∞

X(Wi) =∞,

then the process is explosive. We will assume the process is
nonexplosive.

                                          0                      W1        W2      W3  W4   W

Figure 2: One sample path of a CTMC that is explosive.
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Embedded Markov Chain

Waiting times: {Wn}∞n=0
Interevent times: {Tn}∞n=0, Tn = Wn+1 −Wn

Define a new random variable for state of the CTMC at the nth jump:

Yn = X(Wn), n = 0, 1, 2, . . . .

Embedded MC: {Yn}∞n=0.

The embedded Markov chain is a DTMC, useful for classifying
states as transient or recurrent in the associated CTMC.
Example: Transition matrix for embedded MC of Poisson process (all
states are transient):

T =


0 0 0 ...
1 0 0 ...
0 1 0 ...
0 0 1 ...
... ... ... . . .
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Null Recurrence and Positive Recurrence

Unfortunately, the concepts of null recurrence and positive
recurrence for a CTMC cannot be defined in terms of the embedded
Markov chain. Positive recurrence depends on the waiting times {Wi}
so that the embedded Markov chain alone is not sufficient to define
positive recurrence.

In an irreducible, recurrent CTMC, let the mean recurrence time
for state i be µii.

If µii <∞, then the CTMC is positive recurrent.

If µii =∞, then the CTMC is null recurrent.
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The Interevent Time for a CTMC Model has an
Exponential Distribution.

The exponential waiting time between events characterizes CTMC
because the exponential distribution has a memoryless property. The
interevent time is Ti = Wi+1 −Wi, where Wi is the time of the ith
jump. The event may be a birth, death, immigration, or any other
event that changes the value of the state variable. The interevent time
Ti ∈ [0,∞) is a continuous random variable.

                               T0                    T1               T2            T3

     X(0)=2

                  0        W1              W2    W3         W4      

Figure 3: A sample path or single realization X(t) of a CTMC,
t ∈ [0,∞) illustrating the jump times {Wi} and the interevent times
{Ti}, X(0) = 2, X(W1) = 3, X(W2) = 4, X(W3) = 3.
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Interevent Time Theorem.
Theorem 1. Let {X(t), t ≥ 0}, be a CTMC such that

∞∑
j=0,j 6=n

pjn(∆t) = α(n)∆t+ o(∆t)

and
pnn(∆t) = 1− α(n)∆t+ o(∆t)

for ∆t sufficiently small. Then the interevent time, Ti = Wi+1 −Wi

given X(Wi) = n, is an exponential random variable with parameter
α(n). Cumulative distribution function for Ti is

Fi(t) = 1− e−α(n)t.

The mean and variance of Ti are

E(Ti) =
1

α(n)
and Var(Ti) =

1

[α(n)]2
.
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Stochastic Realizations

Theorem 2. Let U be a uniform random variable defined on [0, 1] and
T be a continuous random variable defined on [0,∞) with cumulative
distribution

F (t) = Prob{T ≤ t}.
Then T = F−1(U).

Proof. We want to show that Prob{F−1(U) ≤ t} = F (t). The
function F is strictly increasing, so that F−1 exists. In addition, for
t ∈ [0,∞),

Prob{F−1(U) ≤ t} = Prob{F (F−1(U)) ≤ F (t)}
= Prob{U ≤ F (t)}.

Because U is a uniform random variable, Prob{U ≤ y} = y for
y ∈ [0, 1]. Thus, Prob{U ≤ F (t)} = F (t).
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In Biochemical Reactions the Preceding Formula
is referred to as the Gillespie Algorithm or

Stochastic Simulation Algorithm (SSA)

Cumulative Distribution: F (t) = 1− e−α(n)t

Interevent time T :

T = F−1(U) = −
ln(1− U)

α(n)

T = −
ln(U)

α(n)

T is small if α(n) is large!
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Applications of CTMC

(1) Simple Birth and Death Process

(2) SIR Epidemic Process

(3) Competition Process

(4) Predation Process
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(1) Simple Birth and Death Process.

An event can be a birth or a death, i→ i+ 1 or i→ i− 1.
Transition probabilities:

pji(∆t) = Prob{X(t+ ∆t) = j|X(t) = i}

=


di∆t+ o(∆t), j = i− 1
bi∆t+ o(∆t), j = i+ 1
1− (b+ d)i∆t+ o(∆t), j = i
o(∆t), j 6= i− 1, i, i+ 1.

Given X(Wi) = n, α(n) = (b+ d)n. Interevent time Ti is

Ti = −
ln(U)

(b+ d)n.

Ti is small if n is large!
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(1) Simple Birth and Death Process.

Two events: a birth occurs with probability

b

b+ d

and a death with probability

d

b+ d
.

The corresponding ODE is

dn

dt
= (b− d)n, n(0) = N

with solution
n(t) = Ne(b−d)t.
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Three Sample Paths
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Figure 4: Three sample paths of the simple birth and death process with
X(0) = 2, b = 2, and d = 1.
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Generator Matrix and Transition Matrix for the
Embedded MC

Generator matrix:

Q =


0 d 0 0 · · ·
0 −b− d 2d 0 · · ·
0 b −2(b+ d) 3d · · ·
0 0 2b −3(b+ d) · · ·
... ... ... ... ...



Transition matrix for the Embedded MC:

T =


1 d/(b+ d) 0 0 · · ·
0 0 d/(b+ d) 0 · · ·
0 b/(b+ d) 0 d/(b+ d) · · ·
0 0 b/(b+ d) 0 · · ·
... ... ... ... ...


The embedded Markov chain shows that zero is an absorbing state and
the remaining states are transient.
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PGF of the Simple Birth and Death Process

An explicit solution to the transition matrix P (t) is not possible but
we can determine the moments of this distribution by using a technique
known as the generating function technique.

Generating Function Technique: Let the pgf be denoted

P(z, t) =
∞∑
i=0

pi(t)zi.

Multiply the differential equation dp/dt = Qp by zi and sum:

∞X
i=0

z
idpi(t)
dt

=
∞X
i=0

z
i [b(i− 1)pi−1(t) + d(i + 1)pi+1(t)− (b + d)ipi(t)] .

i = 1, 2, . . . pi(0) = δiN . Interchange differentiation and integration:

∂P
∂t

= [d(1− z) + bz(z − 1)]
∂P
∂z
, P(z, 0) = zN .
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Application of the Method of Characteristics

P(z, t) =

8>>>><>>>>:

 
et(d−b)(bz − d)− d(z − 1)
et(d−b)(bz − d)− b(z − 1)

!N
, if b 6= d„

1− (bt− 1)(z − 1)
1− bt(z − 1)

«N
, if b = d.

p0(t) = P(0, t):

p0(t) =

8>>>><>>>>:

 
d− de(d−b)t

b− de(d−b)t

!N
, if b 6= d„

bt

1 + bt

«N
, if b = d.

Mean and Variance:

m(t) = Ne
(b−d)t

and σ
2(t) = N

(b + d)
(b− d)

e
(b−d)t(e(b−d)t − 1), b 6= d

m(t) = N and σ
2(t) = 2Nbt, b = d.
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Probability of Extinction in the Simple Birth and
Death Process

Probability of extinction, p0(t), has a simple expression when t→∞.

Taking the limit,

p0(∞) = lim
t→∞

p0(t) =


1, if b ≤ d(
d

b

)N
, if b > d

See DTMC random walk model with probabilities p and q of
moving right or left, respectively.
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(2) SIR Epidemic Process

Deterministic Model:

dS

dt
= −β

S

N
I

dI

dt
= β

S

N
I − γI = I

„
β
S

N
− γ

«
dR

dt
= γI,

R0 =
βS(0)/N

γ

If R0 > 1, there is an outbreak (increase in number of infectious
individuals).
If R0 ≤ 1, there is no outbreak.

In the stochastic model, what is the probability of an outbreak and
what is the final size?
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Probability of No Outbreak

Prob{∆S(t) = i,∆I(t) = j|(S(t), I(t))})

=



β

N
S(t)I(t) ∆t+ o(∆t), (i, j) = (−1, 1)

γI(t) ∆t+ o(∆t), (i, j) = (0,−1)

1−
[
β

N
S(t)I(t) + γI(t)

]
∆t

+o(∆t), (i, j) = (0, 0)
o(∆t), otherwise.

Probability of no outbreak (extinction) can be approximated by the
birth and death process for large N , S(0)/N ≈ 1, R0 = β/γ,
I(0) = k:

p0(∞) ≈
(
d

b

)k
=
(
γ

β

)
=
(

1

R0

)k
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Three Sample Paths of the SIR Stochastic
Process, R0 = 2
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Figure 5: β = 0.5, γ = 0.25, N = 100, I(0) = 2
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Final Size in the SIR Model, γ = 1,
S(0) = N − 1, and I(0) = 1

Deterministic Model

N
β 20 100 1000
0.5 1.87 1.97 2.00
1 5.74 13.52 44.07
2 16.26 80.02 797.15
5 19.87 99.31 993.03
10 20.00 100.00 999.95

Stochastic Model (Expected Final Size):

N
β 20 100
0.5 1.76 1.93
1 3.34 6.10
2 8.12 38.34
5 15.66 79.28
10 17.98 89.98
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Probability Distribution for the Duration of an
Epidemic
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Figure 6: Probability distribution for the final size of a stochastic SIR
epidemic model when I(0) = 1, S(0) = 19, γ = 1, and β = 0.5, 2,
or 5 (R0 = 0.5, 2, or 5).
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(3) Competition Models

Lotka-Volterra competition, two species compete for the same
resource. The deterministic model has the following form:

dx1

dt
= x1(a10 − a11x1 − a12x2)

dx2

dt
= x2(a20 − a21x1 − a22x2),

where xi(0) > 0, aij > 0 for i = 1, 2 and j = 0, 1, 2. There are
four different outcomes depending in the parameters and the initial
conditions.
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Stochastic Competition Process.

Let X1(t) and X2(t) be random variables for two competing species,
X1, X2 ∈ {0, 1, 2, . . .} and t ∈ [0,∞). Let p(i,j)(t) = Prob{X1(t) =
i,X2(t) = j}. Suppose the birth rates are λi(X1, X2) and death rates
are µi(X1, X2) so that the deterministic model is of the form

dxi

dt
= λi(x1, x2)− µi(x1, x2), i = 1, 2.

One example is

λi(X1, X2) = ai0Xi and µi(X1, X2) = Xi(ai1X1 + ai2X2).

Prob{∆X1(t) = i,∆X2(t) = j|(X1(t), X2(t))}

=

8>>>>>>>>><>>>>>>>>>:

a10X1(t)∆t + o(∆t), (i, j) = (1, 0)
a20X2(t)∆t + o(∆t), (i, j) = (0, 1)
X1(t)[a11X1(t) + a12X2(t)]∆t + o(∆t), (i, j) = (−1, 0)
X2(t)[a21X1(t) + a22X2(t)]∆t + o(∆t), (i, j) = (0,−1)
1−X1(t)[a11X1(t) + a12X2(t)]∆t
−X2(t)[a21X1(t) + a22X2(t)]∆t + o(∆t), (i, j) = (0, 0)
o(∆t), otherwise.
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Stochastic Competition Process.

It follows from forward Kolmogorov differential equations,

dp(i,j)

dt
= λ1(i− 1, j)p(i−1,j) + λ2(i, j − 1)p(i,j−1)

+ µ1(i + 1, j)p(i+1,j) + µ2(i, j + 1)p(i,j+1)

− [λ1(i, j) + λ2(i, j) + µ1(i, j) + µ2(i, j)] p(i,j).

Differential equations for the means are

dE[X1(t)]
dt

= a10E[X1(t)]− a11E[(X1(t))
2]− a12E[X1(t)X2(t)]

dE[X2(t)]
dt

= a20E[X2(t)]− a21E[X1(t)X2(t)]− a22E[(X2(t))
2].

The two differential equations for the means depend on five
unknown variables and cannot be solved explicitly. However, the
form of these equations is similar to the deterministic differential
equations. Specific assumptions (e.g., normality or lognormality)
about E[(X1(t))k(X2(t))l] are required to approximate the higher-
order moments of the distribution known moment closure assumptions.
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An Example of a Competition Process.

Let a10 = 2, a20 = 1.5, a11 = 0.03, a12 = 0.02, a21 = 0.01, and a22 = 0.04. A
stable positive equilibrium exists,

(x̄1, x̄2) = (50, 25)

At t = 5, the means and variances are estimated from 1000 sample paths,

mX1(5) = 49.9, mX2(5) = 23.2,

σX1(5) = 9.4, σX2(5) = 6.8.
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Figure 7: a10 = 2, a20 = 1.5, a11 = 0.03, a12 = 0.02, a21 = 0.01, a22 = 0.04,

X1(0) = 50, and X2(0) = 25. The dotted lines indicate the equilibrium values.
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(4) Predator-Prey Process.

The Lotka-Volterra predator-prey model has the form

dx

dt
= x(a10 − a12y)

dy

dt
= y(a21x− a20),

where aij > 0. The equilibrium is neutrally stable:

(a20/a21, a10/a12)
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Predator-Prey Process.

Let X(t) and Y (t) denote random variables for the size of the prey
and predator populations respectively, in a stochastic Lotka-Volterra
model. Assume the transition probabilities satisfy

Prob{∆X(t) = i,∆Y (t) = j|(X(t), Y (t))}

=



a10X(t)∆t+ o(∆t), (i, j) = (1, 0)
a21X(t)Y (t)∆t+ o(∆t), (i, j) = (0, 1)
a12X(t)Y (t)∆t+ o(∆t), (i, j) = (−1, 0)
a20Y (t)∆t+ o(∆t), (i, j) = (0,−1)
1−X(t)[a10 + a12Y (t)]∆t
− Y (t)[a20 + a21X(t)]∆t+ o(∆t), (i, j) = (0, 0)
o(∆t), otherwise.
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An Example of the Lotka-Volterra Predation
Process.
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Figure 8: A sample path of the Lotka-Volterra predator-prey model is compared to

the solution of the deterministic model. Solutions are graphed over time and in the

phase plane. The parameter values and initial conditions satisfy a10 = 1, a20 = 1,

a12 = 0.02, a21 = 0.01, X(0) = 120, and Y (0) = 40. Solutions with the smaller

amplitude represent the predator. Equilibrium (100, 50).
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Part IV:
Comparison of Stochastic Processes

Introduce Diffusion Process and SDEs

Continuous Random Variable: X(t), t ∈ [0,∞) with values in

(−∞,∞) or [0,∞) or [0,M ].

Markov property: Given any sequence of times, t0 < t1 < · · · <
tn−1 < tn,

Prob{X(tn) ≤ y|X(t0) = x0, X(t1) = x1, . . . , X(tn−1) = xn−1}
= Prob{X(tn) ≤ y|X(tn−1) = xn−1}.

Probability density function (pdf) of X(t): p(x, t),

Prob{X(t) ∈ [a, b]} =
∫ b

a

p(x, t) dx.
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Discrete Random Walk and the Diffusion
Equation

Consider a random walk on the set {0,±∆x,±2∆x, . . .}. Let p = probability
of moving to the right and q = probability of moving to the left, p + q = 1. Let
{X(t)} be DTMC for this random walk, where t ∈ {0,∆t, 2∆t, . . .}, X(t) ∈
{0,±∆x,±2∆x, . . .}, and px(t) = Prob{X(t) = x}. Define u(x, t) = px(t).
It follows that

u(x, t + ∆t) = pu(x− ∆x, t) + qu(x + ∆x, t).

Expanding the right-hand side of the preceding equation using Taylor’s formula about
the point (x, t),

u(x, t + ∆t) = p

"
u(x, t) +

∂u(x, t)
∂x

(−∆x) +
∂2u(x, t)
∂x2

(∆x)2

2
+ O((∆x)3)

#

+ q

"
u(x, t) +

∂u(x, t)
∂x

∆x +
∂2u(x, t)
∂x2

(∆x)2

2
+ O((∆x)3)

#

= u(x, t) + (q − p)
∂u(x, t)
∂x

∆x +
∂2u(x, t)
∂x2

(∆x)2

2
+ O((∆x)3).

Subtracting u(x, t) and dividing by ∆t,

u(x, t + ∆t)− u(x, t)
∆t

= (q − p)
∂u(x, t)
∂x

∆x
∆t

+
1
2
∂2u(x, t)
∂x2

(∆x)2

∆t
+ O

 
(∆x)3

∆t

!
.
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We make the assumptions

lim
∆t,∆x→0

(∆x)3

∆t
= 0

lim
∆t,∆x→0

(p− q)
∆x
∆t

= c,

lim
∆t,∆x→0

(∆x)2

∆t
= D.

Letting ∆t and ∆x approach zero, then

∂u

∂t
= −c

∂u

∂x
+
D

2
∂2u

∂x2
, x ∈ (−∞,∞).

the diffusion equation with drift, where c = drift coefficient D = diffusion
coefficient. When p = 1/2 = q, symmetric, the limiting stochastic process is known
as Brownian motion, c = 0,

∂u

∂t
=
D

2
∂2u

∂x2
, x ∈ (−∞,∞).

If D = 1, Standard Brownian motion or Wiener Process.
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Wiener Process

∂u

∂t
=

1
2
∂2u

∂x2
, x ∈ (−∞,∞).

For u(x, 0) = δ(x), the solution is the pdf of the Wiener process W (t):

p(x, t) =
1
√

2πt
exp

 
−
x2

2t

!
, x ∈ (−∞,∞)

which is also the pdf of a Normal distribution with mean zero and variance t:

W (t) ∼ N(0, t).

Sample paths of the Wiener process are continuous but nowhere differentiable.
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The Forward and Backward Kolmogorov
Differential Equations Follow From these

Assumptions.

The backward Kolmogorov differential equation for a time-
homogeneous process is

∂p(y, x, t)

∂t
= a(x)

∂p(y, x, t)

∂x
+

1

2
b(x)

∂2p(y, x, t)

∂x2
.

The forward Kolmogorov differential equation for a time-homogeneous
process is

∂p(y, x, t)

∂t
= −

∂ [a(y)p(y, x, t)]

∂y
+

1

2

∂2 [b(y)p(y, x, t)]

∂y2
.
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An Itô Stochastic Differential Equation (SDE)

The pdf p(x, t) with p(x, 0) = δ(x− x0) then p(x, t) is a solution
of the forward Kolmogorov differential equation:

∂p(x, t)

∂t
= −

∂ [a(x, t)p(x, t)]

∂x
+

1

2

∂2 [b(x, t)p(x, t)]

∂x2
.

A sample path of the process {X(t), t ∈ [0,∞)} is a solution of the
Itô SDE of the form:

dX(t) = a(X(t), t)dt+
√
b(X(t), t)dW (t), X(0) = x0

where W (t) is a Wiener process.
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Some Comparison of the Simple Birth and
Death Process

CTMC Transition probabilities:

pji(∆t) = Prob{X(t+ ∆t) = j|X(t) = i}

=


di∆t+ o(∆t), j = i− 1
bi∆t+ o(∆t), j = i+ 1
1− (b+ d)i∆t+ o(∆t), j = i
o(∆t), j 6= i− 1, i, i+ 1.

DTMC and CTMC have the same probability of extinction:

p0(∞) =


1, b ≤ d(
d

b

)k
, b > d
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SDE for a Birth and Death Process:

dX(t) = (b− d)Xdt+
√

(b+ d)X(t)dW (t), X(0) = k.

CTMC and SDE have the same mean and variance. The mean is the
same as the ODE model (b 6= d):

E(X) = ke(b−d)t, V ar(X) = k
(b+ d)

b− d
e(b−d)t(e(b−d)t − 1)

See Lectures by E.Allen, J. Xiong and J. M. Ponciana
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