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This Lecture Is Divided Into Several Parts

(1) A procedure is reviewed for deriving a stochastic ordi-
nary differential equation from an associated discrete stochas-
tic model.

(2) Stochastic ordinary differential equation systems are de-
rived for several population problems. Equivalence of SDE
systems is explained.

(3) It is shown how stochastic partial differential equation mod-
els can be derived. Several examples are presented.



A Procedure Is Reviewed For Deriving SDEs

(1) A discrete stochastic model is developed for the random
dynamical system. Specifically, for a small time interval, the
possible changes with their corresponding transition probabil-
ities are determined.

(2) The expected changes and the covariance matrix for the
changes are determined for the discrete stochastic process.

(3) A stochastic differential equation model is inferred by sim-
ilarities in the forward Kolmogorov equations between the dis-
crete and continuous stochastic processes. (Solutions of the
discrete model and the SDE approximately satisfy the same
probability distribution.)



The Procedure Is Illustrated For The Birth-Death Process

A simple deterministic model for population growth is:















dx(t)

dt
= bx − dx

x(0) = x0

where x(t) is population at time t and b and d are birth and
death rates. The solution is:

x(t) = x0 exp((b − d)t).
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Figure 1: Exponential growth with x0=18 and b − d = .0344



But Actual Populations Do Not Grow Smoothly
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Figure 2: Whooping Crane Population 1939-1985

The population varies in an non-smooth manner due to random
births and deaths.



Considering Random Births And Deaths, A Discrete
Stochastic Model Is First Constructed

The random changes in births and deaths are considered for a
small time interval ∆t.

For interval ∆t, three possible changes are a birth, a death, or
no change: β1 = 1, β2 = −1, or β3 = 0.

The probabilities of these changes are:

P1 = bx∆t, P2 = dx∆t, P3 = 1 − (b + d)x∆t.

Let pk(t) = P (X(t) = xk) be the probability of having xk individ-
uals at time t. Then,

pk(t + ∆t) = pk(t)[1 − bxk∆t − dxk∆t] + pk−1(t)[bxk−1∆t] + pk+1(t)[dxk+1∆t]



Solutions To A Certain SDE Approximately Satisfy The Same
Probability Distribution As The Discrete Stochastic Process

For small ∆t, the probability distribution approximately satis-
fies

∂p(x, t)

∂t
= −∂(p(x, t)(b − d)x)

∂x
+ 1

2

∂2(p(x, t)(b + d)x)

∂x2
.

But p(x, t) is the distribution satisfied by solutions of the SDE:

dx(t) = (b − d)x dt +
√

((b + d)x) dW (t)

where W (t) is a Wiener process.

So, solutions of the discrete stochastic process and the SDE
approximately satisfy the same probability distribution.



An SDE Models The Random Population Growth

The stochastic population model

dx(t) = (b − d)x(t)dt +
√

(b + d)x(t) dW (t)

can be solved computationally using:

xi+1 = xi + (b − d)xi∆t + ηi

√

(b + d)xi∆t where ηi ∼ N(0, 1).
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Figure 3: Simulated Whooping Crane Populations 1939-1985



An SDE Extends An ODE To Include Randomness

The stochastic population model

dx(t) = (b − d)x(t)dt +
√

(b + d)x(t) dW (t)

is an SDE model for the birth-death process that can be studied
theoretically or computationally.

For example, it immediately yields the standard deterministic

ODE model:
dy(t)

dt
= (b − d)y(t) where y(t) = E(x(t)).

The SDE retains the random nature of the actual birth-death
process and there are an infinite number of sample path solu-
tions to the SDE. For this problem, the sample paths of the
SDE give exact first and second moments to the actual birth-
death process. That is,

E(x(t)) = a exp (b − d)t

Var(x(t)) = a(b + d)(exp (2(b − d)t) − exp ((b − d)t))/(b − d).



Multidimensional SDEs For Complicated Problems Can Be
Derived By Construction Of A Discrete Stochastic Model

Suppose for small ∆t that the discrete stochastic model has
mean and covariance matrix for a change ∆~x:

E(∆~x) = ~µ(~x(t), t)∆t

E(∆~x∆~xT ) = V (~x(t), t)∆t.

Then, the corresponding SDE system is:

d~x(t) = ~µ(~x(t), t)dt + (V (~x(t), t))1/2d ~W (t)

where
~x(t) = [x1(t), x2(t), . . . , xn(t)]

T ,

~W (t) = [W1(t), . . . , Wn(t)]
T is an n-dimensional Wiener process,

~µ is a vector of length n, and V is an n × n covariance matrix.



Briefly Summarizing, Discrete Stochastic Processes And
Stochastic Differential Equations Are Closely Related

(1) Solutions of a discrete stochastic process and a stochastic
differential equation (SDE) may have approximately the same
probability distribution.

(2) This helps us in deriving a stochastic differential equation
by first constructing a discrete stochastic model.



Consider An SDE For Two Interacting Biological Populations

Population 1 Population 2

Transfers 

Births and deaths Births and deaths 

Figure 4: A Diagram Of Two Interacting Populations



A Discrete Stochastic Model Is First Constructed

Let x1(t) and x2(t) be the population sizes.

Let ~∆x = (∆x1, ∆x2)
T be the change in the populations over ∆t.

Seven possibilities for ~∆x in time ∆t:

~η1 = (−1, 0)T , ~η2 = (−1, 1)T , ~η3 = (0,−1)T , ~η4 = (0, 0)T ,

~η5 = (0, 1)T , ~η6 = (1,−1)T , and ~η7 = (1, 0)T .

The probabilities for these changes are, respectively:

P1 = d1x1∆t, P2 = m12x1∆t, P3 = d2x2∆t,

P4 = (1 − b1x1∆t − m12x1∆t − d1x1∆t − d2x2∆t − m21x2∆t − p2∆t),

P5 = b2x2∆t, P6 = m21x2∆t, P7 = b1x1∆t.

where b1, d1, b2, d2, m12, and m21 are population parameters.

Therefore,

E( ~∆x) =

7
∑

j=1

Pj~ηj =





−d1x1 − m12x1 + m21x2 + b1x1

−d2x2 − m21x2 + m12x1 + b2x2



∆t = ~µ∆t

E( ~∆x ~∆x
T
) =





d1x1 + m12x1 + m21x2 + b1x1 −m12x1 − m21x2

−m12x1 − m21x2 d2x2 + m21x2 + m12x1 + b2x2



∆t.



An SDE Model Of Two Interacting Populations Is Obtained

With ~µ =





−d1x1 − m12x1 + m21x2 + b1x1

−d2x2 − m21x2 + m12x1 + b2x2



 and

V =





d1x1 + m12x1 + m21x2 + b1x1 −m12x1 − m21x2

−m12x1 − m21x2 d2x2 + m21x2 + m12x1 + b2x2





the SDE system obtained for the population dynamics is:

d~x(t) = ~µ(~x, t)dt + (V (~x, t))1/2 d ~W (t)

where ~W (t) is the two-dimensional Wiener process.

Note: If V = 0, then the system reduces to a standard deter-
ministic model for the population dynamics.

Note: For a single population, the system reduces to

dx1 = (b1 − d1)x1dt +
√

(b1 + d1)x1 dW1(t).



DERIVATION OF ACCURATE SDE MODELS

In summary, the derivation procedure in deriving an SDE re-
quires three steps:

First, a discrete stochastic model for the process is developed
by carefully listing the possible changes along with the corre-
sponding probabilities for a short time step ∆t.

Second, the expected change and covariance matrix for the
change is calculated for the discrete stochastic process.

Third, the stochastic differential equation system is obtained
by letting the expected change divided by ∆t be the drift co-
efficient and the square root of the covariance matrix divided
by ∆t be the diffusion coefficient.

Note that the derivation procedure provides an Itô SDE rather
than, for example, a Stratonovich SDE.



CALCULATING SQUARE ROOTS OF MATRICES

The derivation procedure produces a term in the SDE system
that involves the square root of a symmetric positive definite
matrix, that is, B = V 1/2. Solution of the stochastic system
involves computation of square roots of matrices.

For a 2 × 2 matrix, the square root can be readily calculated.
Indeed,

V 1/2 =





a b

b c





1/2

=
1

d





a + w b

b c + w



 ,

where w =
√

ac − b2 and d =
√

a + c + 2w. However, for a general
n× n symmetric positive definite matrix V with n ≥ 3, there is
no formula for V 1/2 and it must be calculated numerically.

If V is put in the canonical form V = P TDP , where P TP = I
and dii > 0 for i = 1, 2, . . . , n, then V 1/2 = P TD1/2P . However, for
a large matrix, it is computationally intensive to accurately
compute all of the eigenvalues and eigenvectors of V which are
needed to determine P and D. Fortunately, there are available
many numerical procedures for computing V 1/2 directly.



CONSTRUCTION OF EQUIVALENT SDE MODELS IS USEFUL

Often, the square root of the covariance matrix B = V 1/2 can
be avoided by using an equivalent stochastic system.

Two SDE systems are now studied which are structurally dif-
ferent yet have identical probability distributions. In addition,
it can be shown that a sample path solution of one system is
also a sample path solution of the other system.

As the SDE models can be interchanged, conceptual or compu-
tational advantages possessed by either SDE can be employed
in any particular problem.



EQUIVALENT SDE SYSTEMS

Consider the two Itô SDE systems:

d ~X(t) = ~f (t, ~X(t)) dt + G(t, ~X(t)) d ~W (t),

and
d ~X∗(t) = ~f (t, ~X∗(t)) dt + B(t, ~X∗(t)) d ~W ∗(t).

where
G : [0, T ] × R

d → R
d×m,

and
B : [0, T ] × R

d → R
d×d.

Let ~X(t) = [X1(t), X2(t), . . . , Xd(t)]
T , ~X∗(t) = [X∗

1 (t), X∗
2 (t), . . . , X∗

d(t)]T ,
~W (t) = [W1(t), W2(t), . . . , Wm(t)]T , and ~W ∗(t) = [W ∗

1 (t), W ∗
2 (t), . . . , W ∗

d (t)]T ,
where Wi(t), i = 1, . . . , m and W ∗

j (t), j = 1, . . . , d are independent
Wiener processes and m ≥ d.

Matrices G and B are related through the d×d matrix V , where
V (t, ~z) = G(t, ~z)GT (t, ~z) and B(t, ~z) = V 1/2(t, ~z) for ~z ∈ R

d.

It is shown that solutions to these SDEs have the same prob-
ability distribution.



EQUIVALENT SDE SYSTEMS

Notice that the d×d symmetric positive semidefinite matrix V
has entries

vi,j(t, ~X) =

m
∑

l=1

gi,l(t, ~X)gj,l(t, ~X)

and d× d symmetric positive semidefinite matrix B has entries
that satisfy

vi,j(t, ~X) =

d
∑

l=1

bi,l(t, ~X)bj,l(t, ~X)

for i, j = 1, . . . , d. In component form, these systems can be
expressed as

Xi(t) = Xi(0) +

∫ t

0

fi(s, ~X(s)) ds +

∫ t

0

m
∑

j=1

gi,j(s, ~X(s)) dWj(s)

for i = 1, 2, . . . , d, where fi is the ith entry of ~f and gi,j is the i, j
entry of the d × m matrix G and

X∗
i (t) = X∗

i (0) +

∫ t

0

fi(s, ~X∗(s)) ds +

∫ t

0

d
∑

j=1

bi,j(s, ~X∗(s)) dW ∗
j (s)

for i = 1, . . . , d and bi,j is the i, j entry of the d × d matrix B.



EQUIVALENT SDE SYSTEMS

The solutions to these SDEs possess the same probability dis-
tributions; they are equivalent in distribution.

Consider the forward Kolmogorov equation for the probability
density function p(t, ~x) associated with the SDE

∂p(t, ~x)

∂t
=

1

2

d
∑

i=1

d
∑

j=1

∂2

∂xi∂xj

[

p(t, ~x)

m
∑

l=1

gi,l(t, ~x)gj,l(t, ~x)

]

−
d
∑

i=1

∂
[

p(t, ~x)fi(t, ~x)
]

∂xi
.

In particular, if ~z1, ~z2 ∈ R
d and ~z1 ≤ ~z2, then

P (~z1 ≤ ~X(t) ≤ ~z2) =

∫ z2,d

z1,d

∫ z2,d−1

z1,d−1

. . .

∫ z2,1

z1,1

p(t, ~x) dx1 dx2, . . . dxd.

As the elements of V satisfy

vi,j(t, ~x) =

m
∑

l=1

gi,l(t, ~x)gj,l(t, ~x) =

d
∑

l=1

bi,l(t, ~x)bj,l(t, ~x),

the two systems have the same forward Kolmogorov equation.



EQUIVALENT SDE SYSTEMS

In summary, the following result can be proved.

THEOREM: Solutions to the two SDE systems possess the
same probability distribution. In addition, a sample path so-
lution of one equation is a sample path solution of the second
equation.

Equivalent SDE systems:

d ~X(t) = ~f (t, ~X(t)) dt + G(t, ~X(t)) d ~W (t),

and
d ~X∗(t) = ~f (t, ~X∗(t)) dt + B(t, ~X∗(t)) d ~W ∗(t).

where G is d × m and B is d × d,

~X(t) = [X1(t), X2(t), . . . , Xd(t)]
T , ~X∗(t) = [X∗

1 (t), X∗
2 (t), . . . , X∗

d(t)]T ,

~W (t) = [W1(t), W2(t), . . . , Wm(t)]T , and ~W ∗(t) = [W ∗
1 (t),W ∗

2 (t), . . . , W ∗
d (t)]T ,

and where V = GGT and B = V 1/2.



EQUIVALENT SDE SYSTEMS

Consider formulating an SDE model from a random dynami-
cal system consisting of d components, where m ≥ d distinct
independent random changes may occur to the components of
the system during a small interval of time.

Two modeling procedures are described for formulating an
SDE model.

In the first procedure, the m changes are collectively consid-
ered and means and covariances are determined.

In the second procedure, each change is considered separately.

In both procedures, the number of equations in the SDE model
equals the number of components, d. In addition, the two SDE
models are equivalent in that they possess the same probability
distribution and a sample path solution of one SDE is also a
sample path solution of the other SDE.



EQUIVALENT SDE SYSTEMS

Consider a stochastic modeling problem that involves d com-
ponent processes S1, S2, . . . , Sd, ~S = [S1, S2, . . . , Sd]

T , where there
are a total of m ≥ d possible changes that can occur to at least
one of the variables Si in a small time interval ∆t.

Suppose that the probabilities of these changes can be defined
as pj∆t ≡ pj(t, ~S)∆t for j = 1, 2, . . . , m, where the jth change al-
ters the ith component by the amount λj,i for i = 1, 2, . . . , d.

Let ~rj represent a random change of the jth kind:

~rj = [λj,1, λj,2, . . . , λj,d]
T with probability pj∆t.

For ∆t small, (~rj)i has approximate mean λj,ipj∆t and variance
λ2

j,ipj∆t.

An accurate yet simple stochastic model for ~Sn+1, given the
vector ~Sn, is

~Sn+1 = ~Sn +

m
∑

j=1

~rj

for n = 0, 1, . . . .



EQUIVALENT SDE SYSTEMS

In the first modeling procedure, the probability distribution
associated with the discrete-time stochastic system is approx-
imately the same as that associated with the SDE system











d~S(t) = ~f (t, ~S(t))dt + B(t, ~S(t))d ~W ∗(t)

~S(0) = ~S0,

where the d× d matrix B = V 1/2 and ~W ∗(t) is a vector of d inde-
pendent Wiener processes.

The vector ~f and the matrix B are defined by:

E(∆~S) =

m
∑

j=1

pj
~λj∆t = ~f∆t and E(∆~S(∆~S)T ) =

m
∑

j=1

pj
~λj(~λj)

T∆t = V ∆t

where B = V 1/2.



EQUIVALENT SDE SYSTEMS

In the second modeling procedure, the m random changes are
approximated using independent normal variables, ηj ∼ N(0, 1),
j = 1, 2, . . . , m. For small ∆t, the discrete stochastic model is
approximated by

Sn+1,i = Sn,i + fi(tn, ~Sn)∆t +

m
∑

j=1

λj,ip
1/2
j (∆t)1/2ηj

for n = 0, 1, . . . . This discrete stochastic model is an Euler-
Maruyama approximation and converges strongly to the SDE
system

d~S(t) = ~f (t, ~S(t)) dt + G(t, ~S(t)) d ~W (t),

where the i, j entry in the matrix G is gi,j = λj,ip
1/2
j .

This SDE system has m Wiener processes and the d× d matrix
V = GGT has entries

(V )i,l = (GGT )i,l =

M
∑

j=1

gi,jgl,j =

M
∑

j=1

pjλjiλjl = vi,l.

Thus, the d × m matrix G satisfies V = GGT and the two SDE
systems are equivalent.



EXAMPLE OF EQUIVALENT SDE MODELS

Suppose that there are three chemical species S1, S2, and S3 in-
teracting through molecular collisions or spontaneously in the
four ways described in the table. In the table, µ1, µ2, µ3, and µ4

are reaction rate constants and X1, X2, and X3 are the number
of molecules of species S1, S2, and S3, respectively.

Reaction Probability
S1 + S2 → S3 p1 = µ1X1X2∆t
S3 → S1 + S2 p2 = µ2X3∆t
2S2 + S3 → 2S1 p3 = µ3X

2
2X3∆t/2

2S1 → 2S2 + S3 p4 = µ4X
2
1∆t/2

Possible Change Probability

(∆ ~X)1 = [−1,−1, +1]T p1 = µ1X1X2∆t

(∆ ~X)2 = [+1, +1,−1]T p2 = µ2X3∆t

(∆ ~X)3 = [+2,−2,−1]T p3 = µ3X
2
2X3∆t/2

(∆ ~X)4 = [−2, +2, +1]T p4 = µ4X
2
1∆t/2



EXAMPLE OF EQUIVALENT SDE MODELS

To form the SDE model using the first procedure, E(∆ ~X) and

E((∆ ~X)(∆ ~X)T ) are computed. Using the tables,

~f (X1, X2, X3)∆t = E(∆ ~X) =

4
∑

i=1

pi(∆ ~X)i

=





−µ1X1X2 + µ2X3 + µ3X
2
2X3 − µ4X

2
1

−µ1X1X2 + µ2X3 − µ3X
2
2X3 + µ4X

2
1

µ1X1X2 − µ2X3 − µ3X
2
2X3/2 + µ4X

2
1/2



∆t

and

V (X1, X2, X3)∆t = E((∆ ~X)(∆ ~X)T ) =

4
∑

i=1

pi(∆ ~X)i(∆ ~X)Ti

=





a + 4b a − 4b −a − 2b
a − 4b a + 4b −a + 2b
−a − 2b −a + 2b a + b



∆t

where a = µ1X1X2 + µ2X3 and b = µ3X
2
2X3/2 + µ4X

2
1/2. It follows

that the SDE model for this example problem has the form

d ~X(t) = ~f (X1, X2, X3) dt + (V (X1, X2, X3))
1/2 d ~W ∗(t)

where ~W ∗(t) = [W ∗
1 (t), W ∗

2 (t), W ∗
3 (t)]T .



EXAMPLE OF EQUIVALENT SDE MODELS

Using the second modeling procedure for this example gives
the SDE model:











d ~X(t) = ~f (X1, X2, X3) dt + G(X1, X2, X3) d ~W (t)

~X(0) = [X1(0), X2(0), X3(0)]T ,

where ~W (t) = [W1(t), W2(t), W3(t), W4(t)]
T is a vector of four in-

dependent Wiener processes and the 3 × 4 matrix G has the
form

G =





−(µ1X1X2)
1/2 (µ2X3)

1/2 2(µ3X
2
2X3/2)1/2 −2(µ4X

2
1/2)1/2

−(µ1X1X2)
1/2 (µ2X3)

1/2 −2(µ3X
2
2X3/2)1/2 2(µ4X

2
1/2)1/2

(µ1X1X2)
1/2 −(µ2X3)

1/2 −(µ3X
2
2X3/2)1/2 (µ4X

2
1/2)1/2



 .



EXAMPLE OF EQUIVALENT SDE MODELS

To illustrate the agreement between the two SDE models, cal-
culational results using the models were compared with those
obtained using a Monte Carlo procedure.

In the Monte Carlo procedure, the molecular process was checked
at each small interval of time to see if any reaction occurred.
The calculational results for the Monte Carlo procedure are
summarized in the table for 5000 sample paths.

The SDE models were numerically solved using the Euler-
Maruyama method with 5000 sample paths with the results
given in in the table. Also, sample paths calculated using the
two SDE models are shown in the figures.

Notice the good agreement between the two SDE models as
well as between the SDE models and the Monte Carlo ap-
proach.



EXAMPLE OF EQUIVALENT SDE MODELS

Using Monte Carlo, the following results were obtained at time
t = 1.0.

Chemical Species E(Xi) σ(Xi)
S1 79.21 7.28
S2 37.61 5.84
S3 131.19 5.54

Using the SDE models, the following results were obtained at
time t = 1.0.

Model Chemical Species E(Xi) σ(Xi)
S1 79.31 7.62

First SDE S2 37.44 6.14
S3 131.17 6.43
S1 79.39 7.69

Second SDE S2 37.47 6.13
S3 131.09 5.85

In the calculations, µ1 = 0.02, µ2 = 0.4, µ3 = 0.001, and µ4 = 0.03.
The initial numbers of molecules were X1(0) = X2(0) = X3(0) =
100 and the final time was t = 1.0.
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Figure 5: Molecular population levels for one sample path of the first SDE
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Figure 6: Molecular population levels for one sample path of the second SDE



PERSISTENCE TIME AND ENVIRONMENTAL VARIABILITY

We briefly consider environmental variability and persistence
time for SDE models.

Recall for two interacting populations that

d~x = ~µ(t, x1, x2) dt + (V (t, x1, x2))
1/2 d ~W (t)

where ~W (t) = [W1(t), W2(t)]
T ~µ and V are

~µ = E(∆~x)/∆t =





b1x1 − d1x1 − m12x1 + m21x2

b2x2 − d2x2 − m21x2 + m12x1





and

V =





b1x1 + d1x1 + m12x1 + m21x2 −m12x1 − m21x2

−m12x1 − m21x2 b2x2 + d2x2 + m12x1 + m21x2



 .

For a single population, this system reduces to

dx1 = (b1x1 − d1x1) dt +
√

b1x1 + d1x1 dW1(t).



EXAMPLE: PERSISTENCE-TIME ESTIMATION

For two interacting populations, the mean persistence time can
be defined to be the expected time it takes for the size of either
population to reach zero. The mean persistence time can be
estimated through numerical solution of the SDE or by solv-
ing the backward Kolmogorov differential equation to find the
mean persistence time directly.

(1) Individual populations can be simulated by solving the
SDE using until one population fails to persist. Averaging
many such calculated persistence times yields an estimate for
the mean persistence time.

(2) The mean persistence time can also be obtained by solv-
ing the backward Kolmogorov equation. Suppose that the size
of population 1 cannot exceed K1 and the size of population
2 cannot exceed K2. The reliability function R(t, y1, y2) is the
probability that the persistence time is greater than t with
initial populations x1(0) = y1 and x2(0) = y2.



EXAMPLE: PERSISTENCE-TIME ESTIMATION

The reliability function R(t, y1, y2) satisfies the backward Kol-
mogorov equation:

∂R

∂t
=

2
∑

k=1

µk(t, y1, y2)
∂R

∂yk
+

1

2

2
∑

k=1

2
∑

m=1

vkm(t, y1, y2)
∂2R

∂yk∂ym
with

R(0, y1, y2) = 1 for (y1, y2) ∈ (0, K1) × (0, K2)

R(t, 0, y2) = 0 for y2 ∈ (0, K2)

R(t, y1, 0) = 0 for y1 ∈ (0, K1)

∂R(t, K1, y2)

∂y1
= 0 for y2 ∈ (0, K2)

∂R(t, y1, K2)

∂y2
= 0 for y1 ∈ (0, K1).

The probability density of persistence times is −∂R(t, y1, y2)

∂t
and

T (y1, y2) =

∫ ∞

0

R(t, y1, y2) dt is the mean persistence time with

initial population sizes y1 and y2.



EXAMPLE: PERSISTENCE-TIME ESTIMATION

As a simple example, consider a single population with birth
and death rates b(y) and d(y), respectively, for 0 ≤ y ≤ K. The
corresponding backward Kolmogorov equation is

∂R

∂t
= (yb(y) − yd(y))

∂R

∂y
+

1

2
(yb(y) + yd(y))

∂2R

∂y2

with R(0, y) = 1 for y ∈ (0, K), R(t, 0) = 0, and
∂R(t,K)

∂y
= 0.

Integrating this equation over time t from 0 to ∞ yields

−1 = (yb(y) − yd(y))
dT (y)

dy
+

1

2
(yb(y) + yd(y))

d2T (y)

dy2

with T (0) = 0 and T ′(K) = 0, where T (y) is the mean persistence
time for a population of initial size y.



EXAMPLE: PERSISTENCE-TIME ESTIMATION

For a computational comparison, assume that K = 20 and the
birth and death rates satisfy

yb(y)−yd(y) =







0 for 0 ≤ y ≤ 10

−1 for 10 < y ≤ 20
and yb(y)+yd(y) = 1 for 0 ≤ y ≤ 20.

The backward equation can be solved exactly to obtain that

T (y) =







−y2 + (21 − e−20)y for 0 ≤ y ≤ 10

y + 100 − (19e−20 + e−40e2y)/2 for 10 < y ≤ 20.

In particular, T (5) = 80.0, T (10) = 110.0, and T (15) = 115.0. For
comparison purposes, the SDE







dx =
(

b(x)x − d(x)x
)

dt +
√

(b(x)x + d(x)x) dW (t)

x(0) = y

was computationally solved using 10,000 sample paths. The
estimates obtained were T (5) ≈ 80.07, T (10) ≈ 111.05, and T (15) ≈
114.01 indicating good agreement between the SDE calculations
and the backward Kolmogorov equation.



CONSIDER INCLUDING ENVIRONMENTAL VARIABILITY

In the previous SDE models, randomness was caused by ran-
domly varying births, deaths, and interactions. However, the
environment also randomly varies affecting the populations.

One way to model the environmental effects would be to in-
clude additional variables such as rainfall, predators, competi-
tors, and food supply. Consider the deterministic model for a
population of size y(t):

dy

dt
= b(t)y − d(t)y.

In a varying environment, the birth and death rates would be
functions of additional environmental variables and so, b(t) =
b(t, v1, v2, . . . , vn) and d(t) = d(t, v1, v2, . . . , vn) where v1, v2, . . . , vn are
n additional variables. As v1, v2, . . . , vn vary, the birth and death
rates also vary. Hence, an approximate way to include environ-
mental variability, without modeling additional environmental
factors, would be to allow the birth and death rates to vary
randomly. So, the changes in the environment may produce
random changes in a population’s birth and death rates that
are independent from changes due to demographic variability.



EXAMPLE: INCLUDING ENVIRONMENTAL VARIABILITY

A discrete stochastic process is now described for the phe-
nomenon.

Let y(t), b(t), and d(t) be the population size, birth rate, and
death rate. The changes in these three variables in time ∆t
are independent under our hypothesis. The possible changes
∆y, ∆b and ∆d are listed in the table.

Let qb∆t represent the probability associated with random dif-
fusion of the per capita birth rate. The term ±βb(be − b) rep-
resents the probability associated with drift toward the mean
value of be. When b(t) 6= be, where be is the average birth rate in
the environment, then the probability of moving closer to be is
greater than the probability of moving further away from be.



Change Probability

∆y1 = −1 p1 = dy∆t
∆y2 = 1 p2 = by∆t
∆y3 = 0 p3 = 1 − (by + dy)∆t
∆b1 = −αb p4 = (qb − βb(be − b))∆t
∆b2 = αb p5 = (qb + βb(be − b))∆t
∆b3 = 0 p6 = 1 − 2qb∆t
∆d1 = −αd p7 = (qd − βd(de − d))∆t
∆d2 = αd p8 = (qd + βd(de − d))∆t
∆d3 = 0 p9 = 1 − 2qd∆t



EXAMPLE: INCLUDING ENVIRONMENTAL VARIABILITY

The expected change and the covariance matrix for the change
are found as:

E(∆y) = (b(t) − d(t))y(t)∆t

E((∆y)2) = (b(t) + d(t))y(t)∆t

E(∆b) = 2αbβb(be − b(t))∆t

E((∆b)2) = 2α2
bqb∆t

E(∆d) = 2αdβd(de − d(t))∆t

E((∆d)2) = 2α2
dqd∆t.

For convenience, define β1, β2, α1, and α2 as

β1 = 2αbβb, β2 = 2αdβd, α2
1 = 2α2

bqb, and α2
2 = 2α2

dqd.

As the covariance matrix is diagonal for this model, the follow-
ing stochastic differential equation system is obtained:


























dy(t) =
(

b(t)y(t) − d(t)y(t)
)

dt +
√

(

b(t)y(t) + d(t)y(t)
)

dW1(t)

db(t) = β1(be − b(t)) dt + α1 dW2(t)

dd(t) = β2(de − d(t)) dt + α2 dW3(t).



EXAMPLE: INCLUDING ENVIRONMENTAL VARIABILITY

The SDE for b(t) (or d(t)) is an Ornstein-Uhlenbeck process and
can be solved exactly to yield

b(t) = be + exp(−β1t)
(

− be + b(0) +

∫ t

0

α1 exp(β1s) dW2(s)
)

.

This equation implies that, for large time t, the birth rate b(t) is
approximately normally distributed with mean be and variance
α2

1/(2β1). Thus, in this stochastic model, random variations in
the environment cause the birth rate (or the death rate) to
vary normally about a mean value be.
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Figure 7: Population distribution at t = 1 for an initial population of size 30 obtained through numerical
solution of the SDE system with no environmental variability (a) and with environmental variability (b)

EXAMPLE: INCLUDING ENVIRONMENTAL VARIABILITY

As a computational example, assume β1 = 1 = β2, α1 = 0.5 = α2,
be = 1, de = 1.4. Suppose that y(0) = 30, b(0) = be, and d(0) = de.

In the figure, the probability distribution of the population size
y(t) is plotted at time t = 1.0. Two different cases are consid-
ered: when there is environmental variability and when there
is no environmental variability. It is clear for this example that
the variability in the environment spreads out the population
size distribution.



It Is Interesting That Results Of Stochastic Models Can Differ From

Deterministic Models

Consider two competing species with populations x1(t) and x2(t), x1(0) =

x2(0) = 15, and with birth rates and death rates satisfying:

B1(x1, x2) =
5

6
x1(t), D1(x1, x2) =

2

5
x1(t) +

1

100
x2

1(t) +
1

45
x1(t)x2(t)

B2(x1, x2) =
9

10
x2(t), D2(x1, x2) =

3

4
x2(t) +

1

150
x2

2(t) +
1

200
x1(t)x2(t)

The deterministic model for this competition problem is

dx1

dt
= B1(x1, x2) − D1(x1, x2),

dx2

dt
= B2(x1, x2) − D2(x1, x2)

and the SDE model is

dx1 = (B1(x1, x2) − D1(x1, x2)) dt +
√

B1(x1, x2) + D1(x1, x2) dW1(t)

dx2 = (B2(x1, x2) − D2(x1, x2)) dt +
√

B2(x1, x2) + D2(x1, x2) dW2(t).

For the deterministic model, population x1 always out-competes x2.

However, for the stochastic model, population x1 out-competes x2 only 55%

of the time.



Summarizing The First Part, SDE Models Can Be Derived For Many

Biological Problems

(1) The dynamical system, with time discrete, is studied to determine the

different independent changes that occur for a small time interval.

(2) Appropriate terms are determined for these changes in constructing a

discrete-time stochastic model.

(3) As the time interval approaches zero, the discrete stochastic model

leads to a certain stochastic differential equation system. (Solutions of the

discrete model and the SDE approximately satisfy the same probability

distribution.)

Note that in the derivation procedure, the deterministic and stochastic

terms are simultaneously found.



A Straightforward Procedure Is Described For Deriving
SPDEs

It is assumed that the variable of interest randomly varies with
time and depends on other variables such as size, position,
energy, or age.

(A) A discrete stochastic model is first developed where the
problem is discretized in time and in the secondary variables.

(A-1) The dynamical system is studied to determine the
different independent random changes that occur.

(A-2) Probabilities are determined for these changes in
developing the discrete stochastic model.

(B) As the time interval decreases, the discrete stochastic model
leads to a certain SDE system.

(C) Brownian sheets are substituted into the SDE system for
the Wiener processes.

(D) The intervals in the secondary variables go to zero and an
SPDE model is found that approximates the SDE system.



To Derive SPDES, Brownian Sheets Are Often Useful

∫ x+∆x

x

∫ t+∆t

t

∂2W (x, t)

∂x∂t
dx dt = η

√
∆x∆t is normally distributed with

mean 0 and variance ∆x∆t for any t and x.
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Figure 8: A Brownian Sheet on [0, 1] × [0, 1]



Brownian Sheets Can Define Wiener Processes

If xj = xmin+(j−1)∆x for j = 1, 2, . . . , N , then the Brownian sheet
defines the standard Wiener processes:

dWj(t) =
1√
∆x

∫ xj+1

xj

∂2W (x′, t)

∂t∂x′ dx′dt for j = 1, 2, . . . , N.

Notice that if ti = (i − 1)∆t for t = 1, 2, . . . , M , then
∫ ti+1

ti

dWj(t
′) =

√
∆t ηi,j ηi,j ∼ N(0, 1).

Three-dimensional Brownian sheets can also define Wiener pro-
cesses such as:

dW (t) =
1√

∆x∆y

∫ x+∆x

x

∫ y+∆y

y

∂3W (x′, y′, t)

∂t∂x′∂y′
dy′dx′dt.



Wiener Processes Parameterized By x Are Also Useful

From a two-dimensional Brownian sheet, an independent one-
dimensional Wiener process in t can be defined for each x by

W ∗(t; x) = lim
∆x→0

1√
∆x

∫ x+∆x

x

∂W (x′, t)

∂x
dx′

where if x1 6= x2, then the Wiener process W ∗(t; x1) is indepen-
dent of the Wiener process W ∗(t; x2).

In addition, the integral of the partial derivative of f (x, t)
∂W (t; x)

∂t
is defined as:

∫ x+∆x

x

∂

∂x

[

f (x, t)
∂W (t; x)

∂t

]

dx = f (x+∆x, t)
∂W (t; x + ∆x)

∂t
−f (x, t)

∂W (t; x)

∂t
.



Several Examples Of Deriving SPDEs Are Presented

(A) A stochastic one-dimensional wave equation

(B) A stochastic one-dimensional transport equation

(C) Age- and Size-structured stochastic population models

(D) A stochastic reaction-diffusion equation



THE CLASSIC PROBLEM OF A RANDOMLY
VIBRATING STRING IS CONSIDERED

(A) A string undergoing random impulses is modeled.

(B) One could consider the string being hit randomly by sand
particles in a dust storm.

(C) This problem was first considered by J. B. Walsh in 1986
who pointed out that the string displacement could be modeled
by an SPDE.



RANDOM IMPULSES IN A VIBRATING STRING ARE
MODELED

Impulses of magnitude ±γ randomly occur along a taut string.

The probability of an impulse in length ∆x in time ∆t is λ∆x∆t.

For length ∆x the forces are given in the figure:

x x+∆ x

θ
1

θ
2

T sin θ
1

T sin θ
2

If u(x, t) is the string displacement, then

T sin(θ1) ≈ −Tux(x, t) and T sin(θ2) ≈ Tux(x + ∆x, t).



CONSIDERING THE CHANGES IN MOMENTUM OVER
A SMALL TIME INTERVAL LEADS TO AN SDE MODEL

Possible Momentum Change (∆M) Probability

∆t(Tux(x + ∆x, t) − Tux(x, t)) + γ λ∆t∆x
∆t(Tux(x + ∆x, t) − Tux(x, t)) − γ λ∆t∆x
∆t(Tux(x + ∆x, t) − Tux(x, t)) 1 − 2λ∆t∆x

Calculating

E(∆M) = ∆t(Tux(x + ∆x, t) − Tux(x, t))

and
E((∆M)2) = 2γ2λ∆t∆x,

it follows that the discrete stochastic model satisfies:

M(x, t+∆t)−M(x, t) ≈ (Tux(x+∆x, t)−Tux(x, t)))∆t+
√

2γ2λ∆t∆x ηx,t

where ηx,t ∼ N(0, 1) and M(x, t) is momentum of length ∆x at t.



LETTING THE TIME AND THE SPATIAL INTERVALS
SHRINK, AN SPDE MODEL IS OBTAINED

As mass × velocity = momentum, then

M(x, t + ∆t) − M(x, t) ≈ ρ∆x(ut(x, t + ∆t) − ut(x, t)).

Substituting in this expression, we obtain that

ρ(ut(x, t + ∆t) − ut(x, t)

∆t
=

(Tux(x + ∆x, t) − Tux(x, t)))

∆x
+

√

2γ2λ

∆t∆x
ηx,t.

This leads directly to the SPDE

ρutt(x, t) = Tuxx(x, t) +
√

2γ2λ
∂2W (t, x)

∂t∂x

where the diffusion coefficient
√

2γ2λ has a physical meaning.



A STOCHASTIC ENERGY-DEPENDENT TRANSPORT
EQUATION IS DERIVED

The deterministic time-dependent transport equation has the
form:

∂n(E, t)

∂t
= −vσt(E)n(E, t) +

∫ Emax

0

v′σs(E
′, E)n(E ′, t) dE ′

where
n(E, t) = number of particles at t of energy E per unit energy
v = particle speed at energy E
σt(E) = probability per unit distance of a particle interaction
σs(E

′, E) = probability of a change from energy E ′ to E

Note: An infinite homogeneous medium is assumed.



TO DERIVE THE SDE MODEL, A DISCRETE ENERGY
TRANSPORT EQUATION IS USED

Assuming that

n(E, t) ≈
G
∑

g=1

χg(E)ng(t)/(∆E)g

where (∆E)g = Eg − Eg+1 and χg(E) =

{

1, Eg+1 ≤ E ≤ Eg

0, otherwise.

Then, the discrete energy equations are obtained:

dng(t)

dt
= −vgσa,gng(t) −

G
∑

g′′=1

vgσs,g,g′′ng(t) +

G
∑

g′=1

vg′σs,g′,gng′(t)

for g = 1, 2, . . . , G, where, for example,

vgσt,g =
∫ Eg

Eg+1
vσt(E) dE/(∆E)g.



AN SDE MODEL CAN NOW BE DERIVED FOR
DISCRETE ENERGY TRANSPORT

In deriving an SDE model, all changes in the system are deter-
mined for a small time step ∆t. This results in a discrete-time
stochastic model. A particular SDE model is then inferred
from the discrete stochastic model through similarities in the
Kolmogorov equations.

For the discrete energy transport equations, there are G + G2

possible changes in each time interval ∆t. Specifically, a par-
ticle may be absorbed in group g with probability σa,gvg∆t for
g = 1, 2, . . . G or a particle may scatter from group g′ to group g
with probability σs,g′,gvg′∆t for g, g′ = 1, 2, . . . G.



A SYSTEM OF DISCRETE ENERGY STOCHASTIC
DIFFERENTIAL EQUATIONS IS OBTAINED

The stochastic discrete-energy equations have the form:

dng(t) = −vgσa,gng(t) dt −
√

vgσa,gng(t) dŴg(t) −
G
∑

g′′=1

vgσs,g,g′′ng(t) dt

−
G
∑

g′′=1

√

vgσs,g,g′′ng(t) dWg,g′′(t) +

G
∑

g′=1

vg′σs,g′,gng′(t) dt

+

G
∑

g′=1

√

vg′σs,g′,gng′(t) dWg′,g(t) for g = 1, 2, . . . , G.

Next, Brownian sheets are substituted for the Wiener pro-
cesses.



Brownian Sheets Are Substituted For The Wiener Processes

The stochastic discrete-energy equations have the form for g =
1, 2, . . . , G:

dng(t) =

−vgσa,gng(t) dt −
√

vgσa,gng(t)
1

√

∆Eg

∫ Eg+1

Eg

∂2Ŵ (E, t)

∂E∂t
dE

G
∑

g′=1

vg′σs,g′,gng′(t)

−
G
∑

g′′=1

vgσs,g,g′′ng(t) dt +

G
∑

g′=1

vg′σs,g′,gng′(t) dt

−
G
∑

g′′=1

√

vgσs,g,g′′ng(t)
1

√

∆Eg∆Eg′′

∫ Eg+1

Eg

∫ Eg′′+1

Eg′′

∂3W (E, E ′′, t)

∂E ′∂E∂t
dEdE ′′

+

G
∑

g′=1

√

vg′σs,g′,gng′(t)
1

√

∆Eg∆Eg′

∫ Eg+1

Eg

∫ Eg′+1

Eg′

∂3W (E ′, E, t)

∂E ′∂E∂t
dEdE ′.

This equation is divided by ∆Eg with ng(t) = n(Eg, t)∆Eg. Letting
the energy intervals go to zero results in an SPDE model.



THE FINAL SPDE MODEL FOR PARTICLE TRANSPORT
HAS AN INTERESTING STRUCTURE

∂n(E, t)

∂t
= −vσa(E)n(E, t) −

√

vσa(E)n(E, t)
∂2Ŵ (E, t)

∂E∂t

+

∫ Emax

0

v′σs(E
′, E)n(E ′, t) dE ′ −

∫ Emax

0

vσs(E, E ′′)n(E, t) dE ′′

+

∫ Emax

0

√

v′σs(E ′, E)n(E ′, t)
∂3W (E ′, E, t)

∂E ′∂E∂t
dE ′

−
∫ Emax

0

√

vσs(E, E ′′)n(E, t)
∂3W (E, E ′′, t)

∂E∂E ′′∂t
dE ′′

where Ŵ (E, T ) and W (E ′, E, t) are independent Brownian sheets.



SPDEs For Structured Populations Are Derived From Basic
Assumptions

(A) The dynamical system, with time and size discrete, is stud-
ied to determine the different independent random changes
that occur.

(B) Appropriate terms are determined for these changes in
developing a discrete-time stochastic model. This model leads
to a certain stochastic differential equation system as the time
interval decreases.

(C) The stochastic differential equation system then leads to a
certain SPDE as the size interval is made smaller.



A Size-Structured Population Model Is Now Considered

A standard partial differential equation for a size-structured
population has the form:






























∂u(x, t)

∂t
+

∂(g(x, t)u(x, t))

∂x
= −µ(x, t, P (t))u(x, t), xmin < x < xmax,

g(xmin, t)u(xmin, t) =
∫ xmax

xmin
β(x, t, P (t))u(x, t) dx,

u(x, 0) = u0(x), P (t) =
∫ xmax

xmin
u(x, t) dx,

where
u(x, t) is the population density at time t and size x,
µ is the death rate,
β is the birth rate,
g is the growth rate of an individual,
P (t) is the total number of individuals in the population,
xmin and xmax are the minimum and maximum sizes.



The Changes Are Now Considered For A Time Interval ∆t

Let uk(t) be the population level at time t of size xk−1 to size
xk. The changes possible for uk(t) are tabulated in Table 1 for
k > 1. Births are added to the first size class and the possible
changes are given in Table 2 for k = 1.

Table 1 Possible Changes For k > 1
Possible Change (∆u)k Probability

1 uk−1gk−1∆t/∆x
-1 ukgk∆t/∆x
-1 ukµk∆t

Table 2 Possible Changes For k = 1
Possible Change (∆u)1 Probability

1
K
∑

k=1

ukβk∆t

-1 u1g1∆t/∆x
-1 u1µ1∆t

Tables 1 and 2 define a discrete stochastic model for a system
of K subpopulations.



The Discrete Stochastic Model Leads To The Itô Stochastic
Differential Equation System As ∆t Decreases

The discrete stochastic model leads to the Itô system:

duk(t) = −ukgk − uk−1gk−1

∆x
dt − ukµk dt +

√

uk−1gk−1

∆x
dWk−1(t)

−
√

ukgk

∆x
dWk(t) −

√
ukµk dŴk(t)

for k = 2, 3, . . . K with

du1(t) =

K
∑

k=1

ukβk dt − u1g1

∆x
dt − u1µ1 dt +

√

√

√

√

K
∑

k=1

ukβk dW̃ (t)

−
√

u1g1

∆x
dW1(t) −

√
u1µ1dŴ1(t)

where Wk(t), Ŵk(t), and W̃ (t), are independent Wiener processes
for k = 1, 2, . . . , K.



The Itô Stochastic Differential Equation System Can Be
Rewritten Using Brownian Sheets

Introduced is a family of one-dimensional Wiener process W ∗(t; x)
parameterized by size x. In addition, a Brownian sheet W (x, t)
is applied. Then,

duk(t)

dt
= −ukgk − uk−1gk−1

∆x
− ukµk +

√

uk−1gk−1

∆x

∂W ∗(t; xk−1)

∂t

−
√

ukgk

∆x

∂W ∗(t; xk)

∂t
−√

ukµk
1√
∆x

∫ xk

xk−1

∂2W (x, t)

∂x∂t
dx

for k = 2, 3, . . . K with

du1(t)

dt
=

K
∑

k=1

ukβk −
u1g1

∆x
− u1µ1 +

√

√

√

√

K
∑

k=1

ukβk
dW (t)

dt

−
√

u1g1

∆x

∂W ∗(t; x1)

∂t
−√

u1µ1
1√
∆x

∫ x2

x1

∂2W (x, t)

∂x∂t
dx.



The Size Interval ∆x Now Approaches Zero Resulting In An
SPDE For The Size-Structured Population

Letting uk(t) = u(xk, t)∆x and decreasing ∆x, then

∂u(x, t)

∂t
= −∂(u(x, t)g(x, t))

∂x
− u(x, t)µ(x, t, P (t))

− ∂

∂x

[

√

u(x, t)g(x, t)
∂W ∗(t; x)

∂t

]

−
√

u(x, t)µ(x, t, P (t))
∂2W (x, t)

∂x∂t

with

u(xmin, t)g(xmin, t) +
√

u(xmin, t)g(xmin, t)
∂W ∗(t; xmin)

∂t
=

∫ xmax

xmin

u(x′, t)β(x′, t, P (t))dx′ +

√

∫ xmax

xmin

u(x′, t)β(x′, t, P (t))dx′ dW (t)

dt
.

Notice that the SPDE generalizes the original PDE.



The Population’s Age Structure As Well As Size Structure Is
Now Considered

A deterministic size- and age-structured partial differential
equation is:






























∂u(x, y, t)

∂t
+

∂(h(x, y, t)u)

∂y
+

∂(g(x, y, t)u)

∂x
= −µ(x, y, t, P (t))u(x, y, t)

h(x, 0, t)u(x, 0, t) =
∫ xmax

xmin

∫ ymax

0 β(x′, x, y′, t, P (t))u(x′, y′, t) dy′dx′

u(x, y, 0) = u0(x, y), P (t) =
∫ xmax

xmin

∫ ymax

0 u(x, y, t) dydx

for 0 < y < ymax, xmin < x < xmax, and t > 0 where
u(x, y, t) is the population density,
µ(x, y, t, P (t)) is the death rate for size x and age y,
β(x′, x, y′, t, P (t)) is the rate of newborns of size x born from
individuals of size x′ and age y′,
g(x, y, t) is the growth rate of an individual,
h(x, y, t) is the age rate of an individual,
P (t) is the total number of individuals,
h(x, 0, t)u(x, 0, t) is the birth rate for newborns of size x.



Similar To The Size-Structured Population, A Discrete
Stochastic Model Is First Constructed

The time, size, and age intervals are now allowed to approach
zero and an SPDE is obtained:

∂u(x, y, t)

∂t
= −∂(g(x, y, t)u(x, y, t))

∂x
− ∂(h(x, y, t)u(x, y, t))

∂y

−µ(x, y, t, P (t))u(x, y, t) − ∂

∂x

[

√

g(x, y, t)u(x, y, t)
∂2W ∗(t, y; x)

∂y∂t

]

−
√

µ(x, y, t, P (t))u(x, y, t)
∂3W (x, y, t)

∂x∂y∂t

with

h(x, 0, t)u(x, 0, t) =

∫ ymax

0

∫ xmax

xmin

u(x′, y′, t)β(x′, x, y′, t, P (t))dx′dy′

+

√

∫ ymax

0

∫ xmax

xmin

u(x′, y′, t)β(x′, x, y′, t, P (t))dx′dy′
∂2W (x, t)

∂x∂t



The SPDEs Are Numerically Solved And Compared With
Independent Monte Carlo Computations

The SPDE for a size-structured population is first considered.
To obtain a numerical method, the population is divided into
size classes and time is discretized. Using an explicit approxi-
mation in time gives

uk,i+1 = uk,i −
uk,igk,i − uk−1,igk−1,i

∆x
∆t − uk,iµk,i ∆t

+

√

uk−1,igk−1,i∆t

∆x
ηk−1,i −

√

uk,igk,i∆t

∆x
ηk,i −

√

ukµk∆t η̂k,i

for k = 2, 3, . . . K and i = 0, 1, 2, . . . with

u1,ig1,i∆t

∆x
+

√

u1,ig1,i∆t

∆x
η1,i =

K
∑

k=1

uk,iβk,i ∆t −

√

√

√

√

K
∑

k=1

ukβk,i∆t η̃i

where ηk,i, η̂k,i, η̃i ∼ N(0, 1) are independent normally distributed.
(A form of Euler-Maruyama approximation is used.)



The SPDEs Are Numerically Solved And Compared With
Independent Monte Carlo Computations

In the Monte Carlo procedure, the population was divided into
100 size classes and time was divided into 1000 intervals. For
each time step, each subpopulation was checked for a death,
birth, or size change.
The growth rate, death rate, birth rate, and initial population
were assumed to be g(x, t) = .5(1 − x), µ(x, t) = .5, β(x, t) = 1.5,
u(x, 0) = 600(1 − x)2. With these parameters, the exact solution
to the deterministic size-structured model was u(x, t) = 600(1 −
x)2 exp(t).

Results For 500 Sample Paths
Avg. Population Standard Dev. Average Standard Dev.

Level in Pop. Level Size in Size
330.16 (MC) 20.852 (MC) .25099 (MC) .00946 (MC)
331.46 (SPDE) 22.211 (SPDE) .25063 (SPDE) .01070 (SPDE)
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Figure 9: Calculated Distribution of Populations Levels at Time t = 0.5 for 500 Sample Paths Using Monte
Carlo (MC) and the Stochastic Partial Differential Equation (SPDE)
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Figure 10: Calculated Distribution of Average Size at Time t = 0.5 for 500 Sample Paths Using Monte Carlo
(MC) and the Stochastic Partial Differential Equation (SPDE)



The Age- And Size-Structured SPDE Was Also Numerically
Solved And Compared With Monte Carlo Computations

Integrating the SPDE over a size interval and over an age in-
terval and using an explicit approximation in time yielded the
numerical procedure

uj,k,i+1 = uj,k,i −
uj,k,igj,k,i − uj,k−1,igj,k−1,i

∆x
∆t − uj,k,ihj,k,i − uj−1,k,ihj−1,k,i

∆y
∆t

− uj,k,iµj,k,i ∆t +

√

uj,k−1,igj,k−1,i∆t

∆x
ηj,k−1,i −

√

uj,k,igj,k,i∆t

∆x
ηj,k,i

−
√

uj,k,iµj,k,i∆t η̂j,k,i

for j = 2, 3, . . . J and k = 1, 2, . . . , K with

h1,k,iu1,k,i

∆y
=

K
∑

k′=1

J
∑

j′=1

uj′,k′,iβj′,k′,k,i ∆t +

√

√

√

√

K
∑

k′=1

J
∑

j′=1

uj′,k′,iβj′,k′,k,i∆t η̃k,i

where ηj,k,i, η̂j,k,i, η̃k,i ∼ N(0, 1) are independent and uj,k,i ≈ u(xk, yj, ti)∆x∆y
(A type of Euler-Maruyama approximation is used.)



The Age- And Size-Structured SPDE Was Also Numerically
Solved And Compared With Monte Carlo Computations

In an independent Monte Carlo procedure, the age- and size-
structured population was divided into 200 size-age classes and
time was divided into 4000 steps. For each time step, each
subpopulation was checked for a death, birth, or size change.

The growth rate, death rate, birth rate, and initial population
were assumed to be:
g(x, y, t) = .5(1 − x)(1 − y),
µ(x, y, t) = −1 + 2/(1 − y) − (1 − 2x)(1 − y),
β(x′, x, y′, t) = 18x(1 − x), u(x, y, 0) = 7200x(1 − x)(1 − y)2,
with xmin = 0, xmax = 1 ymin = 0, and ymax = 1.

With these parameter selections, the exact solution to the de-
terministic PDE is u(x, y, t) = 7200x(1 − x)(1 − y)2 exp(t).



Numerical Solution Of The SPDE Compared Well With
Monte Carlo Computations

The population levels (total number of individuals), average
individual size, and the average individual age at time t = 1 for
500 sample paths are given.

Population Standard Dev. Average Standard Dev.
Level in Pop. Level Size in Size

1038.89 (MC) 82.36 (MC) 0.49963 (MC) 0.00404 (MC)
1076.52 (SPDE) 96.53 (SPDE) 0.50180 (SPDE) 0.00599 (SPDE)

Individual Average Standard Dev.
Age in Age

0.26318 (MC) 0.00410 (MC)
0.26855 (SPDE) 0.00570 (SPDE)
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Figure 11: Calculated Distribution of Populations Levels at Time t = 1.0 for 500 Sample Paths Using Monte
Carlo (MC) and the Stochastic Partial Differential Equation (SPDE)
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Figure 12: Calculated Distribution of Average Size at Time t = 1.0 for 500 Sample Paths Using Monte Carlo
(MC) and the Stochastic Partial Differential Equation (SPDE)
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Figure 13: Calculated Distribution of Average Age at Time t = 1.0 for 500 Sample Paths Using Monte Carlo
(MC) and the Stochastic Partial Differential Equation (SPDE)



Consider Now Derivation Of An SPDE For A
Reaction-Diffusion Problem

Reaction-diffusion models are useful in population genetics mod-
els and in population dynamics models. For example, reaction-
diffusion models may be useful in studying competition be-
tween two different species in a spatially-varying environment.

A deterministic reaction-diffusion model for two species may
have the form:

∂N1(t, x)

∂t
= D1(x)

∂2N1(t, x)

∂2x
+ N1b1(t, x, N1, N2) − N1d1(t, x, N1, N2)

∂N2(t, x)

∂t
= D2(x)

∂2N2(t, x)

∂2x
+ N2b2(t, x, N1, N2) − N2d2(t, x, N1, N2).



Considered Here Is A Single Population N(x, t) And The
Changes Are Studied For A Time Interval ∆t

Let Nk(t) be the population level at time t from position xk−1

to position xk = xk−1 + ∆x. The changes possible for Nk(t) are
given in the table.

Possible Change (∆N)k Probability
1 b(t, Nk)Nk

-1 d(t, Nk)Nk

1 J+(xk−1)∆t
-1 J−(xk−1)∆t
-1 J+(xk)∆t
1 J−(xk)∆t

where b and d denote birth and death rates, respectively, and
J+ and J− are right- and left-moving currents.

This table defines a discrete stochastic model for a system of
subpopulations.



An SDE Model Is Obtained For The System Of
Subpopulations

The SDE system has the form:

dNk(t) = (b(t, Nk)Nk − d(t, Nk)Nk)dt

+ (J+(xk−1) − J−(xk−1))dt − (J+(xk) − J−(xk))dt

+
√

b(t, Nk)Nk + d(t, Nk)Nk)
1√
∆x

∫ xk

xk−1

∂2W (t, x)

∂t∂x
dx

+
√

(J+(xk−1))
∂W+(t; xk−1)

∂t
−
√

(J+(xk))
∂W+(t; xk)

∂t

−
√

(J−(xk−1))
∂W−(t; xk−1)

∂t
+
√

(J−(xk))
∂W−(t; xk)

∂t

where certain Wiener processes and Brownian sheets are used
in the expression.



Now, The Spatial Interval Is Allowed To Approach Zero
Resulting In An SPDE

Substituting N(xk, t)∆x = Nk(t), J+(x) = −D

2

∂N(x, t)

∂x
+

v

2
N(x, t),

and J−(x) =
D

2

∂N(x, t)

∂x
+

v

2
N(x, t) and letting ∆x approach zero,

then the reaction-diffusion SPDE is obtained:

∂N(x, t)

∂t
= b(t, N)N − d(t, N)N +

∂

∂x

(

D(x)∂N(x, t)

∂x

)

+
√

b(t, N)N + d(t, N)N)
∂2W (t, x)

∂t∂x

+
∂

∂x

(
√

−D(x)

2

∂N(x, t)

∂x
+

v

2
N(x, t)

∂W+(t; x)

∂t

)

− ∂

∂x

(
√

D(x)

2

∂N(x, t)

∂x
+

v

2
N(x, t)

∂W−(t; x)

∂t
.

)



Good Results Are Obtained Between The SPDE And Monte
Carlo Computations

An infinite region −∞ < x < ∞ is considered where the initial
population density satisfies N(x, 0) = 60 − 120x2 + 60x4 for −1 ≤
x ≤ 1 and N(x, 0) = 0, otherwise. Let b = d = 0. Two cases are
considered: D = 0.05, v = 1.5 and D = 0.067, v = 2.0. The mean
number of individuals in the interval [−1, 1] and the variance
are computed at the times t = 2.5, 5.0, 10.0, 20.0. The results
for the SPDE model are compared with Monte Carlo (MC)
computations using 4000 paths.

Table: Calculational results for the two cases
Time Mean (SPDE) Var. (SPDE) Mean (MC) Var. (MC)
2.5 57.5 5.74 57.8 5.46
5.0 51.0 9.83 51.6 9.72
10.0 42.3 13.6 43.3 14.2
20.0 33.1 15.8 34.0 16.1

2.5 55.1 7.86 56.0 7.05
5.0 47.6 12.2 49.0 11.5
10.0 38.5 15.7 39.9 14.9
20.0 29.3 16.4 30.7 16.4


