
An introduction to Markov chains

Jie Xiong

Department of Mathematics
The University of Tennessee, Knoxville

[NIMBioS, March 16, 2011]



Mathematical biology (WIKIPEDIA)
Markov chains also have many applications in biological
modelling, particularly population processes, which are useful in
modelling processes that are (at least) analogous to biological
populations. The Leslie matrix is one such example, though
some of its entries are not probabilities (they may be greater
than 1). Another example is the modeling of cell shape in
dividing sheets of epithelial cells. Yet another example is the
state of Ion channels in cell membranes.
Markov chains are also used in simulations of brain function,
such as the simulation of the mammalian neocortex.
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1. Basic definitions
A sequence of random variables {Xn : n = 0, 1, 2, ⋅ ⋅ ⋅ }
State space S = {1, 2, ⋅ ⋅ ⋅ , N} or S = ℕ

Definition

{Xn} is a Markov chain if

ℙ (Xn+1 = in+1∣X0 = i0, ⋅ ⋅ ⋅ , Xn = in)

= ℙ (Xn+1 = in+1∣Xn = in) .

If S = {1, 2, ⋅ ⋅ ⋅ , N}, {Xn} is a finite Markov chain.



Definition (1-step transition)

pij(n) = ℙ (Xn+1 = j∣Xn = i) , i, j ∈ S

is the 1-step transition probability at time n from i to j.
If it does not depend on n, {Xn} is a time-homogeneous
Markov chain.

Denote the transition matrix by

P =

⎛⎝ p11 p12 p13 ⋅ ⋅ ⋅
p21 p22 p23 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎞⎠
Note that ∑

j∈S
pij = 1, i ∈ S.



Definition (n-step transition)

p
(n)
ij = ℙ (Xn = j∣X0 = i) , i, j ∈ S

is the n-step transition probability from i to j.

Denote the n-step transition matrix by P (n).
Note that

P (0) = I and P (1) = P.



Theorem (Chapman-Kolmogorov equation)

P (m+n) = P (m)P (n), ∀ m, n ∈ ℕ.

Proof:

p
(m+n)
ij = ℙ (Xm+n = j∣X0 = i)

=
∑
k∈S

ℙ (Xm = k, Xm+n = j∣X0 = i)

=
∑
k∈S

ℙ (Xm = k∣X0 = i)ℙ (Xm+n = j∣Xm = k, X0 = i)

=
∑
k∈S

p
(m)
ik ℙ (Xm+n = j∣Xm = k)

=
∑
k∈S

p
(m)
ik p

(n)
kj .



Corollary

P (n) = Pn

Proof: (Induction) If n = 1, P (1) = P 1.
Assume P (k) = P k.
Let n = k + 1. Then

P (k+1) = P (k)P 1 = P kP = P k+1



2. State classification

Definition

Let i, j ∈ S. j is accessible from i (denote i→ j) if p
(n)
ij > 0 for

some n.
i and j communicate (denote i↔ j) if i→ j and j → i.

Note that “communicate” is an equivalence relation, namely

reflexivity: i↔ i (p
(0)
ii = 1 > 0)

symmetry: i↔ j implies j ↔ i

transitivity: i↔ j and j ↔ k imply i↔ k

S is divided into equivalent classes.



Definition

Each equivalence class is a class of the MC

If there is only one class, the MC is irreducible

Class C is closed if

pij = 0, ∀ i ∈ C and j /∈ C.



Example

P =

⎡⎢⎢⎢⎢⎣
1
2

1
2 0 0 0

1
3

2
3 0 0 0

0 0 0 1 0
0 0 0 1

2
1
2

0 0 0 1 0

⎤⎥⎥⎥⎥⎦
Then

C1 = {1, 2}, C2 = {3}, C3 = {4, 5}

C1, C3 are closed. C2 is not closed.



Definition

Period of i is

d(i) = gcd{n ≥ 1 : p
(n)
ii > 0}, gcd∅ = 0

If d(i) = 1, i is aperiodic.



Theorem

If i↔ j, then d(i) = d(j).

Proof: Suppose d(i) > 0, p
(m)
ij > 0 and p

(n)
ji > 0.

If p
(s)
ii > 0, then

p
(n+s+m)
jj ≥ p(n)ji p

(s)
ii p

(m)
ij > 0

Similarly,

p
(n+2s+m)
jj > 0.

Thus, d(j) divides n+ s+m and n+ 2s+m. So, d(j) divides s.
Thus, d(j)∣d(i). By symmetry, d(i) = d(j).



Definition

Let
Ti = inf{m ≥ 1 : Xm = i}

and
f
(n)
ii = ℙ(Ti = n∣X0 = i).

i is recurrent if
∑

n≥1 f
(n)
ii = 1. Otherwise, it is transient.

Definition

Suppose i is recurrent. If

�ii ≡ E(Ti) =
∑
n≥1

nf
(n)
ii <∞,

then i is positive recurrent. Otherwise, it is null recurrent.



For 0 < s < 1, let

Fii(s) =

∞∑
n=1

f
(n)
ii sn = EsTi

and

Pii(s) =

∞∑
n=0

p
(n)
ii s

n.



Lemma

Pii(s)(1− Fii(s)) = 1.

Proof: As

p
(n)
ii =

n∑
m=1

f
(m)
ii p

(n−m)
ii ,

we have

Pii(s) = 1 +

∞∑
n=1

n∑
m=1

f
(m)
ii p

(n−m)
ii sn

= 1 +

∞∑
m=1

f
(m)
ii

∞∑
k=0

p
(k)
ii s

ksm

= 1 + Fii(s)Pii(s).



Theorem

i is recurrent iff ∑
n

p
(n)
ii =∞.

Proof: Note that∑
n

p
(n)
ii = Pii(1−) =

1

1− Fii(1−)

=
1

1−
∑

n f
n
ii

.



Corollary

If i↔ j, then i is recurrent iff j is recurrent.

Key for proof:

p
(n+s+m)
jj ≥ p(n)ji p

(s)
ii p

(m)
ij .



Corollary

Every recurrent class is closed.

Proof: If i ∈ C, j /∈ C and i→ j, then

ℙ(∃ n, Xn = i∣X0 = i) ∕= 1.

This contradicts from i being recurrent.



3. Stationary distributions and limit behavior

Theorem

For an irreducible, aperiodic, recurrent MC, we have

lim
n→∞

p
(n)
ij =

1

�jj
, ∀ i, j ∈ S.



Example Let

P =

[
1/2 1/2
1/3 2/3

]
Let

T =

[
1 3
1 −2

]
and T−1 =

1

5

[
2 3
1 −1

]
Then

P = T

[
1 0
0 1

6

]
T−1



Thus

Pn = T

[
1 0
0 1

6n

]
T−1 → T

[
1 0
0 0

]
T−1 =

1

5

[
2 3
2 3

]
Hence

�11 =
5

2
and �22 =

5

3



Corollary

For an irreducible, d-periodic, recurrent MC, we have

lim
n→∞

p
(nd)
ii =

1

�ii
, ∀ i ∈ S.

Proof: Xnd, n = 0, 1, 2, ⋅ ⋅ ⋅ is then an irreducible, aperiodic,
recurrent MC



Let (�i)i∈S be the initial distribution, i.e.,

ℙ(X0 = i) = �i, i ∈ S.

Then,

ℙ(Xn = j) =
∑
i∈S

ℙ(Xn = j∣X0 = i)P (X0 = i)

=
∑
i∈S

�ip
(n)
ij .

Theorem

The distribution of Xn is �Pn.



Definition

(�i) is a stationary distribution if

�P = �

Theorem

For an irreducible, aperiodic, recurrent MC,

�i =
1

�ii
, i ∈ S

is the unique stationary distribution.



Proof: If (�i) is a stationary distribution, then∑
i∈S

�ip
(n)
ij = �j .

Letting n→∞, we get

�j =
∑
i∈S

�i
1

�jj
=

1

�jj
.



On the other hand, we note

p
(n+1)
ij =

∑
k∈S

p
(n)
ik pkj .

Taking n→∞, we get

1

�jj
=
∑
k∈S

1

�kk
pkj .

So, ( 1
�jj

)j∈S is a stationary distribution.



4. Simple random walk
If Xn = i, then Xn+1 = i− 1 or i+ 1 with equal probabilities.
Such a MC is a SRW.

P =

⎡⎢⎢⎣
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1

2 0 1
2 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
2 0 1

2 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎤⎥⎥⎦



Construction of SRW:
Let �1, �2, ⋅ ⋅ ⋅ be i.i.d.

ℙ(�1 = 1) = ℙ(�1 = −1) =
1

2

Define

Xn =

n∑
k=1

�k.

Theorem

{Xn} is a SRW.

Proof:
Xn+1 = Xn + �n+1



5. Continuous time MC
State space S (same)
Time set [0,∞)
A family of random variables {Xt : t ≥ 0}

Definition

{Xt} is a Markov chain if ∀ 0 = t0 < t1 < ⋅ ⋅ ⋅ < tn+1,

ℙ
(
Xtn+1 = in+1∣Xt0 = i0, ⋅ ⋅ ⋅ , Xtn = in

)
= ℙ

(
Xtn+1 = in+1∣Xtn = in

)
.



Transition probabilities (time-homogeneous case)

ℙ(Xt = j∣Xs = i) = pij(t− s).

Denote
P (t) = (pij(t))i,j∈S

Theorem (Chapman-Kolmogorov equation)

P (t+ s) = P (t)P (s), ∀ t, s ≥ 0.



It can be proved that P (t) is differentiable. Denote

Q = P ′(0)

Definition

Q is the infinitesimal generator matrix.



Theorem

P ′(t) = QP (t) = P (t)Q.

Proof:

P ′(t) = lim
ℎ→0

ℎ−1(P (t+ ℎ)− P (t))

= lim
ℎ→0

ℎ−1(P (t)P (ℎ)− P (t))

= P (t) lim
ℎ→0

ℎ−1(P (ℎ)− I)

= P (t)Q



Next, we define jump time

�0 = 0, �n+1 = inf{t > �n : Xt ∕= X�n}.

Define
Yn = X�n , n = 0, 1, 2, ⋅ ⋅ ⋅ .

Theorem

i) Suppose qii ∕= 0. Then, given X�n = i, the r.v. �n+1 − �n has
exponential distribution with parameter −qii.
ii) {Yn} is a discrete-time MC with 1-step transition matrix P
given by

pii = 0, pij =
qij
−qii

, i ∕= j.



6. Poisson process
Example
Xt is the number of certain items (e.g., birth defect, accident,
etc) before time t. Then,

Xt ∼ Poisson(�t)

where � is the average number of items in a unit time.
Xt is a Poisson process. Time gaps between events are i.i.d.
exponential random variables with parameter � = 1

� .



Definition

(Xt) is a Poisson process if

X0 = 0

∀ 0 = t0 < t1 < ⋅ ⋅ ⋅ < tn, the increments

Xti −Xti−1 , i = 1, 2, ⋅ ⋅ ⋅ , n

are independent.

Xt −Xs ∼ Poisson(�(t− s)).

Theorem

For Poisson process, we have

qii = −�, qi,i+1 = �, i = 0, 1, 2, ⋅ ⋅ ⋅ .



7. Critical binary branching process
Initially, there are X0 individuals. Each has an exponential
clock with para. 
, i.e.,

ℙ(�k > t) = e−
t, t > 0, k = 1, 2, ⋅ ⋅ ⋅ , X0.

When the time is up, that individual will split to 2 or die with
equal probability. Let Xt be the number of individuals in the
population at time t. Then, (Xt) is a MC.
Suppose X0 = i. Then

�1 = min {�k : k = 1, 2, ⋅ ⋅ ⋅ , X0} .
As

ℙ(�1 > t) = Πi
k=1ℙ(�k > t) = e−i
t.

Thus
qii = −i
.

Further,

qi,i+1 = qi,i−1 =
1

2
i
.


