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Motivation



Gymnogyps californianus

California Condor
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FiG. 7. Estimated total wild population of the California
Condor, 1965-1980. Data are from October surveys as listed
by Wilbur (1980) and Snyder and Johnson (1985).
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Dendroica kirtlandii

Kirtland’s Warbler
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FiGg. 6. Total count of Kirtland’s Warbler singing males,
1951-1989. Data are from Walkinshaw (1983), supplemented
by more recent counts.




Ursus arctos

Grizzly Bear (Yellowstone)
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Fi1G. 5. Estimated number of adult females in the Yellow-
stone National Park grizzly bear population, 1959-1987. Data,
listed by Eberhardt et al. (1986) and supplemented by recent
figures, consist of a 3-yr moving sum of the yearly number
of adult females seen with cubs.
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Grus americana

Whooping Crane (Aransas, Texas)
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FiG. 4. Totalsize of the Aransas/Wood Buffalo Whooping
Crane population, from 1938-1988. Data are from Boyce
(1987), supplemented by more recent counts.
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Arctocephallus gazella

Fig. 4 Antarctic fur-seal pup 58% | 17% [ 4% ] 4.6% (3.6 SEM)
production at Cape Shirreff and
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Respiratory Syncytial Virus
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Figure 1. Observed time series of infected individuals in Gambia and Finland. Plotted are the monthly number of reported syncytial virus
cases in two cities: Banjul in Gambia (from October 1991 to September 1994) and Turku in Finland (from October 1981 to March 1990). Plotted also is
the mean monthly temperature range for both localities, for the same time spans.

doi:10.1371/journal.pcbi.1001079.g001
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Talk central question

e (QUESTION: Can we use stochastic population models to improve management strategies
for a population of interest and better understand the biological processes driving the
dynamics?

e ANSWER: Probably yes, provided we build those models to seek first biological
understanding of a population of interest, rather than mathematical convenience.

e The statistical methodology should therefore:

1. be informed by the nature of the data and

2. be informed by and inform the probabilistic model-building process using Markov Chains



Gause’s experiment: explaining deviations from
deterministic model
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Motivating example: population growth

The Stochastic Ricker Model (Dennis and Taper 1994):
Nt—|—1 = Nt exp [CL + bNt + O'Zt] where Zt ~ iid N(O, 1)
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Deterministic model
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Deterministic model

Progeny:
3 offspring

Environmental noise model: Time

‘Bad’
year
‘Good’
year
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year:
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Assumptions of the Stochastic Ricker Model

“Cartoon” assumptions:

e This is a population model: “all individuals are equal” (same offspring production, same
survival).

e All individuals reproduce and survive independently of each other.

e Environmental noise is non-autocorrelated /phenomenological.



Assumptions of the Stochastic Ricker Model

“Cartoon” assumptions:

e This is a population model: “all individuals are equal” (same offspring production, same
survival).

e All individuals reproduce and survive independently of each other.

e Environmental noise is non-autocorrelated /phenomenological.
Biologically useful assumptions:

e The growth rate of the population varies randomly from year to year. The environment
affects (equally) every individual in the population (good years, bad years).

e Density-dependence: instead of reaching a carrying capacity point, the population reaches a
stationary distribution, a cloud of points around which it fluctuates.
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However simple, the density independent Stochastic Ricker model N;,1 = Ny{a + o E};} allows
us to do “Population Viability Analysis”:

Dennis, Munholland and Scott. 1991. Estimation of growth and extinction parameters from
endangered species. Ecol. Monogr. 61:115-143

e Explicit expression for the probability of extinction within s years using a diffusion
approximation (Stochastic Differential Equations).

e Explicit expression for the expected time until extinction.



Viability Population Monitoring and estimating trends in

Taper, Ponciano, Shepard, Muhlfeld and Staples. Risk-based viable population monitoring of the upper Flathead bull trout. Submitted to Ecol.

Applications
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Demographic stochasticity: ‘starting from scratch’

e Demographic stochasticity models variability in demographic traits, like reproduction and
survival.

e |t is not obvious how to combine demographic stochasticity with environmental noise in a
general way.

e This problem lead us to try to formulate/understand a model of environmental noise plus
demographic sotchasticity from scratch.
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Demographic stochasticity model: each individual has the same offspring distribution

Average progeny
per parent per year:
3 offspring

Environmental noise and demographic

stochasticity model: Time
‘Bad’ year:

Average of progeny distribution
is depressed by a random quantity

‘Good’ year:

Average of progeny distribution
is enhanced by a random quantity

So a model with Environmental noise and demographic stochasticity
is by nature a hierarchical stochastic model, where the mean of the
demographic process becomes itself a random variable when
environmental noise is introduced.



Demographic variability and genetic heterogeneity:

Average ‘u’ progeny per parent is different, it is
-a quantitative character -

that can be seen as drawn from a population probability
distribution.
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Environmental noise, demographic variability and genetic

heterogeneity:
Average ‘u’ progeny per parent is different, it is
-a quantitative character -
that can be seen as drawn from a population probability
distribution. This distribution is shifted by the enviro. noise
>
4 = —
Average num. ﬁra l \\1
; , ge num. Average num.
offspring u1 offspring u2’ offspri%g u3’
()
‘Good’ year:

Average of every progeny distribution is enhanced by a random quantity or alternatively,

“what is a good year for some is a bad year for others”
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Setting:

e (V;) be a discrete-time, discrete state stochastic process that models the

(density-dependent) growth of a population. Furthermore, let n; denote population size at
time t.

o Let X;,2=1,2,...,n; be 72d random variables denoting the number of offspring born to
individual ¢ (non-overlapping gens.), and g(x), v = 0,1,2,... be the pmf of X; with mean
and variance E[X;] = X and V[X] = ¢?, respectively.

o Let Y, = > " X, be the total number of offspring born between times ¢ and ¢ + 1.

e Finally, let p; be the density dependent probability of survival of each offspring born at time
t. For ex.: py = exp{—bn;}(Ricker), Gompertz model: p; = exp{—bInn;}, Theta-Ricker
model, p; = exp {—bnf}, and the Hassell model p; = 1/(1 + bny)“.

e Each individual survives independently from each other w.p. py.



Demographic Stochasticity:

Conditional on Y; = y, the total number of survivors for next generation is binomially

distributed with parameters y and p;. It follows that the moments of the conditional process
(N 1| Ny = ny) are

E[Nt+1‘Nt = nt] =k [E [Nt+1|(Nt = T, Kt)” = Anypy,
VINi1|Ne = ny) = E [V [Nept|(Ne = g, Y2)|] + V[E [Nega [ (N = ny, V7)]]

= [)‘pt(l — ) + ¢2pﬂ ng.

Example: X; ~ Poisson(\) = (Nyy1|INV; = ny) ~ Poisson(Angp;).
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Environmental Stochasticity:

e Defined as the case wherein one or more of the vital rates, say, the mean of the offspring
distribution, varies randomly over time.

e In the absence of demographic noise, within a single year, all the individuals in the
population get the same vital rate value.

e In the presence of demographic noise and enviro. noise, the offspring distribution that
characterizes all the individuals in the population changes its location parameter every year.

e That is, during “good years” the mean of the offspring distribution of the individuals in the
population increases and during “bad years’ it decreases.

e In that sense, the biological justification of the formulation of an environmental noise model
is to allow for changes over time on the location of the offspring distribution.

e Yet, because for very few probability distributions the mean is not a function of the
variance, it is difficult to conceive practical models where only the mean of the offspring
distribution is affected and not its variance.
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Population size moments under demographic variability
and environmental noise

Let WW; be a r.v. for the value of the mean of the offspring distribution at time ¢. At a given
time t, W; = wy,

o X, ~ g(x,w;) is each individual's offspring distribution.

o B[X;|W; = wy] = w; and V[ X;|[W; = wy] = ¢ (wy).

o If Y, => ", X, then, conditioning on W; = w; (keep that in mind), E[Y;] = wn; and
V[Yt} = nthQ(wt).

e Now assume that (N 1| Ny = ng, Wy = wy, ;) ~ Binomial(Y;, py).

e Averaging over all the possible values of Y; (given that wy is fixed), then, for that particular
year t we get that



Environmental and demographic noise continued

E[NtJrl‘Nt =ng, Wi = wt] =k [E [Nt+1’(Nt = ny, Wy = wy, Kt)“ — WM Py,
V[Nt+1|Nt =ny, Wy = wt] =B [V [Nt+1\(Nt = ng, Wy = wy, Yt)“
+V [E [Nt+1‘(Nt = ny, Wi = wy, Yi)“

= [wtpt<1 — ) + qbQ(wt)pﬂ Ny



Environmental and demographic noise continued

E[N;1|Ny = ng, Wy = wy] = E[E [Nt |[(N; = ng, Wy = wy, Y3)]] = wengpy,
V[Nt+1|Nt =ny, Wy = wt] =k [V [Nt+1‘(Nt = ny, Wi = wy, Yt)“

+VIE [Npy1|(Ny = ng, Wy = wy, V3]

= [wipi(1 = pr) + ¢*(w)p7 ] na.

Now, averaging over all the the possible values of the Environmental process, we get that the
general moments of (N, 1|IV; = ny) are:

E[Nt+1‘Nt = nt] =B [E [Nt+1|(Nt = T, Wt)“ = E[I/Vt}ntpta
VINp1|[Ne = ny] = E [V [Nea|(Ne = ng, W)l + V [E [N [ (Ve = e, Wi (4)

= [E[Wilpi(1 — 1) + El6*(W)Ip7] ne + (nupe)*VIW.



An example with exact transition probability mass
function:

If we let A ~ Gamma(k, ) represent the environmental noise and let each individual have a
Poisson offspring distribution then we get that

['(ng + k o g n o
P(Ntﬂ = nt+1’Nt = nt) = ( s ) < ) ( P ) ;

L(k)nia! \npe + npr + &
where
(b for Ricker model
exp {—b nf} for theta-Ricker model
pr =1 exp{—blnn;} for Gompertz model
/(14 bny)° for Hassell's model
| 1/(1+(a— 1)(ny/K)") for Below's model

Ponciano, J.M. et al in prep. Demographic stochasticity, environmental noise and sampling error: implications for conservation biology.



Simulation Example: Demographic and Environmental
Stochasticities
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Statistical Inference for Markovian population models
models

e Discrete state, discrete time Markov processes
e Discrete state, continuous time

e Continuous state, discrete time

e Accounting for sampling error

e Continuous time, continuous states: next talk



Introducing the likelihood function: a Chain-Binomial
model

e Field work: Monthly census of extant individuals from a closed population that reproduces
every 5 years, for 24 months

e No reproduction occurs during those 24 months

e Data: Number of survivors at the end of each one of the 24 months (no sampling error):
n1,Ma, . .., No4, starting at nyg = known cst.

e We want to study the survival process during those 24 months.



Introducing the likelihood function: a Chain-Binomial
model

e Probabilistic model of the biological process: consider a discrete time, discrete state
Markov process { N }; that models only the survival process from one unit of time to the
other (from one month to the next).

o Let pjj = P(Ny11 = j|N; = i), assume ny is a fixed quantity and let
7: Z Z_j . .
Pij = ] p(l_p) ) ]2071772

e \We have a complete probabilistic description of the observations, except we don't know p!

e Biological questions of interest: Does p changes from one year to the other? From season
to season? Between sexes or ages?



The likelihood function

It is the joint probability of the observations [V, evaluated at the recorded data (the n;), which,
according to the Markov property is:

L(p) = P(N1 =n1,No =ng, ..., Noy =noy) = H?il P(N; =n;|N;—1 =n;_1)
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L(p)/L(P)

RL(p)
0.4

1.0
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0.0

The relative likelihood function

Relative likelihood: L(p)/L(p)

0.86

0.88 0.90 0.92 0.94

values of p

Maximizing L(p) : set%;p) = 0, solve forp

1 dL(p) _
Amounts to set o A = 0, solve for p.

That is,

_ p)ni—l_ni

dnL 24 -1\ 1
dp<p) — dip [Zizl 1H< nf)p (1

24 24
=17 =1 Mol _
p (1-p)




The likelihood function for the model with environmental
and demographic stochasticities:

Let A ~ Gamma(k, o) represent the environmental noise and let each individual have a Poisson
offspring distribution then we saw that the transition pdf was

(g1 + k Q g n s
P<Nt+1 = nt+1’Nt = nt) — ( s ) ( ) ( L ) ;

C(k)ngy! \pe + npr +
where
pr = exp {—b nf} for theta-Ricker model.
Given a time series data set consisting of the (exact) counts ng, n1, ..., n,, then the likelihood

function for the parameters 8 = [k, a, b, 0]'is again the joint pmf of the population sizes
Ny, ..., N, evaluated at the data at hand:
qg—1
L(0) = | [ P(Nes = niga| Ny = me).
t=0
If Ny is an observation from the stationary distribution of the process, then
qg—1
L(H) = P(N() = 77,0) X ““P<Nt_|_1 = ntH]Nt = nt).
t=0




Estimating parameters of a continuous time, discrete
states MC

Consider a pure birth process where

PIN(t+6t) =n+1|N(t)=n] = (0t)\,
P[N(t+ dt) =n|N(t) = n] = 1—(5t)\,
P[more than 1 birth in time 0t] = negligible,

where \, = An. This is an exponential-type growth rate model due to births. Observations of
N(t) at times 0 < t; <ty < ... < t, yield the pairs

(to, no), (t1, nl), (tg, ng), ceey (tq, nq).

Remember that the transition pmf is a translated negative binomial

- 1 n n—nm,
pu(t) = PIN(t) = n|N(0) = no] = (Z’ 1) (™) (1= exp ™) ™" 1 = g, o+ mg 2,
0_

To get the total likelihood of the realized observations we write down the transition pmf of each
step and use the Markov property.



Estimating parameters of a continuous time, discrete

Transition pmf:

PIN(t;) =

ni’N(ti—l) = ni_ﬂ = (

flniti —

ti—1ni—1)

n;—1
ni_l—l

states MC

) (exp—)\(ti—ti—l)>ni—1 (1 _ exp_)‘(ti_ti—ﬂ)ni_ni_l



Estimating parameters of a continuous time, discrete
states MC

Transition pmf:

PIN(t:) = ni|N(ti-1) = ni—1] = ( -l ) (e:><]D_A(lﬁi_l“'—1))ni_1 (1 — eXp_)‘(ti_ti—l))ni_ni_l

ni_l—l

= f(ni,t; —ti—1Ini—1)

Let 4 =t — 0,7 =ty —t1,...,7, = t, — t,—1 (not necessarily evenly spaced).



Estimating parameters of a continuous time, discrete
states MC

Transition pmf:

P[N(t@') = ni]N(ti_l) = ni—l} _ ( n;—1 ) (eXp—A(ti—ti—1)> (1 — exp” Ati—t;_ 1))7%—7%—1

ni_l—l

= f(ni,ti —tiz1|ni—1)
Let 4 =t — 0,7 =ty —t1,...,7, = t, — t,—1 (not necessarily evenly spaced).

Then, the likelihood function necessary to connect the model with data is given by

LX) = f(ny,ne,....,ngno) = f(ni, mi|no) f(ne, 2lng) ... f(ng, 74lng-1)

= T () () (1 = )
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Model: a pure birth process with A\, = 6 + An (immigration + births).
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Confronting multiple birth process models to data using
the likelihood

Model: a pure birth process with A\, = 6 + An (immigration + births).

e—@t(et)n
n!

Case 1: suppose A = 0 (nothing but immigrations), ng = 0. Then p,(t) =

Case 2: \ > 0,n9 = 0 (Immigration and births). Then

it = (V) e

n

Case 3: let A < 0 and —% be an integer so that \, = 60+ An if n < % and 0 if n > —%. Then

_9 8
pult) = (nx) (1— )™ ().
In any case, if the observations (Zy, ng), (t1,n1), (t2,m2), . . ., (t4, ny) are recorded, the likelihood

function is written as

L(X,0) = p(ny, 7i|ng)p(ng, 72|n1) . .. p(ng, 74|ng-1)



Example: a continuous time stochastic SIS model

SIS ODE model: a s
— = —5(I —ql
T = NoUte—yg

S = N — I = # of susceptibles, N = total pop. size (cst.)

[ is the contact rate,

e =import of infection from an external source (e = 0 if pop. is isolated)
g = recovery rate

Analogous to Levins 1969 metapopulation model (Hosts are empty (S) or occupied(])).



Example: a continuous time stochastic SIS model

SIS ODE model: a s
— = —5(I —ql
T = NoUte—yg

S = N — I = # of susceptibles, N = total pop. size (cst.)

[ is the contact rate,

e =import of infection from an external source (e = 0 if pop. is isolated)

g = recovery rate

Analogous to Levins 1969 metapopulation model (Hosts are empty (S) or occupied(])).

Stochastic version: the statesare I =0,1,... ., N. Att =0, I[(0) =k. So P(I(0)=k) =1
and

P(I(t) = i) = pi(t) = P(I() = 8| X (0) = k).



Kolmogorov-Forward equation

If the process is in state ¢ at time ¢, then at time ¢ + At it will be either at state 7 + 1,2 — 1 or
i (At chosen so that at most 1 event occur). Therefore,

pilt+ A1) = pa(D(AY) [FSOUE) + )] + i) ADgI(1)

pilt) |1 = (ADFSOI(E) + ) + (1))

Hence

pltAO-pO) gy () [%S(t)([(t) +e)] +pin(t)(A)gI(t)

—pilt) | #S(OI(E) +€) + g1(1)]
and since S = N — I Vt, and letting At — 0 we get

dp;(t) 5

B B
Py

(N =it 1)(i—1+6)+pa(®)gli + 1) — pil#) [Nuv )it +gi




The transition rates matrix ()

In vector notation,

dp;it) — pi—l(t)%(N — i+ D) —14+¢€)+pia(t)gli + 1) — pi(t) %(N —i)(i+€)+ gt

becomes Cfl—lt) = pQ, where dim(p) =1 x (N + 1) and dim(Q) = (N +1) x (N +1):



The transition rates matrix ()

In vector notation,

dpi (t)
dt

_ pi_l(t)%(]\f i D)= 146+ pra(t)gli+ 1) — pilt) %(N — )it e+ gi

becomes CCIZ—I; = pQ, where dim(p) =1 x (N + 1) and dim(Q) = (N +1) x (N +1):

[ —Be pe 0 0
g - [EV-DA+g+g] FIN-1(+e 0
o2y ~ AV =22+ +29] FIN-2)2+¢)
° =10 0 3¢ —[%(N—3)(3+e)+3g]
0 0 4g




The transition rates matrix ()

In vector notation,

dpi (t)
dt

_ pi_l(t)%(]\f i D)= 146+ pra(t)gli+ 1) — pilt) %(N — )it e+ gi

becomes Cfl—lt) = pQ, where dim(p) =1 x (N + 1) and dim(Q) = (N +1) x (N +1):

[ —Be pe 0 0
g - [EV-DA+g+g] FIN-1(+e 0
o2y ~ AV =22+ +29] FIN-2)2+¢)
° =10 0 3¢ —[%(N—3)(3+e)+3g]
0 0 4g

Solution to the system of ODEs: if p(0) = po, then py = po exp{Qt}



Observing a realization of the process

e Observations at times ¢; <ty < ... <t,1 <t, Let ; =t;, —t;_; as before.

e States: i1,%2,...,%5-1,1
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Time
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el (&)
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(o
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o _|
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Time
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The likelihood function

P(I(t1) = i1) x P(I(ts) = d2lI(t1) = i1) x P(I(tg) = 1q|I(tg-1) = tg-1)

- {ptl}il X {eXp((tQ - tl)Q)}iLZé X {eXp((tB - t2)Q)}i2,i3 X



The likelihood function

= P(I(t)) = 0) X P(I(t2) = is|I(t1) = 11) X P(I(ty) = ig|(tg-1) = ig-1)
- {ptl}h X {eXp((tQ - tl)Q)}iMQ X {eXp((t3 - t2)Q)}z’2,z’3 X
= {Pt, }i; X HZ:Q{QXP(TkQ)}%—Mk



The likelihood function

L) = P(I(t) = ix, I(ts) = n, ..., I(ty1) = ig_1, I(t,) = i,)
= P(I(t) = i1) x P(I(ts) = ia|I(t1) = i1) X P(I(ty) = ig [(ty1) = iy1)
= {pPe, i x {exp((ta = 01)Q) Yiry X {exp((ts — £2)Q) }igiy X - -
= {pu i X [Tio{exp(m@)}iy 1,

= {Ptsti X Hz:Q{IikA X exp(74@Q) }i,, where

I, is a vector that has zeros everywhere, except in the 5t position where it has a 1.



The likelihood function

L(O) = PUI(t) = ir, I(ty) =ia, ... I(ty_1) = ig_1, I(t,) = iy)
= P(I(t) =i1) x P(I(ts) = is| I(t1) = i1) x P(I(t,) = iglI(ty_1) = iy_1)
= {pesfiy X {exp((te = 12)@Q) Firip X {exp((ts — 12)Q) iy X - -
= {pt}i X [Tioofexp((tr — ti-1)@) }ir 1

= {pt1}i1 X Hz:Q{IikA X eXp(Tk‘Q)}ik? where
I, is a vector that has zeros everywhere, except in the 5t position where it has a 1.
Notes:Computing exp(7()) can be done using a matrix exponentiation algorithm (only once
per each iteration of the maximization routine if all 7;'s are equal). However, can greatly reduce
computations by calculating I; exp(7() (a vector) instead of exp(7()) (a matrix). These are
the so-called Krylov space methods. (Citation: On 19 dubious ways. . .)



Matrix exponentiation

A matrix exponentiation is achieved using a T.S. expansion:

7_2

3
-
eXp(TQ):I—i—TQ—FgQQ—i—yQ?’—i—...
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e However this is definitely NOT the way to compute it because of accumulation of numerical
round-off errors!
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A matrix exponentiation is achieved using a T.S. expansion:

™, T 3
exp(7Q) =1+ 7Q + EQ - ?Q +
Hence

Liexp(7Q) = LI+ LirQ +1; Q2 + 1 Q3

J 3'
e However this is definitely NOT the way to compute it because of accumulation of numerical
round-off errors!

e A program to simulate and estimate parameters for this model using R will be reviewed in
the computer session in the afternoon.

e About simulation: with certain computer intensive methods for parameter estimation, all

we need is to simulate realizations from the process conditioned on the ending point. To do
that, use Hobolth and Stone (2009), Annals of Applied Statistics).



Matrix exponentiation

A matrix exponentiation is achieved using a T.S. expansion:

™, T 3
exp(7Q) =1+ 7Q + EQ - ?Q +
Hence

Liexp(7Q) = LI+ LirQ +1; Q2 + 1 Q3

]3'

e However this is definitely NOT the way to compute it because of accumulation of numerical
round-off errors!

e A program to simulate and estimate parameters for this model using R will be reviewed in
the computer session in the afternoon.

e About simulation: with certain computer intensive methods for parameter estimation, all

we need is to simulate realizations from the process conditioned on the ending point. To do
that, use Hobolth and Stone (2009), Annals of Applied Statistics).

e Sampling error?



The likelihood function for waiting times

-0 n
Model: “Case 1" above. We count the number of births up to time ¢, where p,(t) = - trf!et) .

That is,

N(t) ~ Poisson(6t).

Now let S > 0 be a continuous random variable modeling the waiting time until the first birth
occurs. Let s denote a realization of S. Consider the following two events:

[N(s) =0]and[S > s]
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Model: “Case 1" above. We count the number of births up to time ¢, where p,(t) = - trf!et) .

That is,

N(t) ~ Poisson(6t).

Now let S > 0 be a continuous random variable modeling the waiting time until the first birth
occurs. Let s denote a realization of S. Consider the following two events:

[N(s) =0]and[S > s]
These two events are in fact the same event, so P[N(s) = 0] = P[S > s|, which implies that
P(N(s)>0)=1—P(N(s)=0)=P(S < s).
Using our Poisson model for N(s), we then have that
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The likelihood function for waiting times

e—&t(et)n
n!

Model: “Case 1" above. We count the number of births up to time ¢, where p,,(t) =

That is,
N(t) ~ Poisson(6t).

Now let S > 0 be a continuous random variable modeling the waiting time until the first birth
occurs. Let s denote a realization of S. Consider the following two events:

[N(s) =0]and[S > s]
These two events are in fact the same event, so P[N(s) = 0] = P[S > s|, which implies that
P(N(s)>0)=1—P(N(s)=0)=P(S < s).
Using our Poisson model for N(s), we then have that
F(s)=P(S<s)=1—P(N(s)=0)=1—e", (0< s < 00), which is the cdf of S.

Graphing this function we see that F'(s) is simply telling us that if we wait long enough, we are
almost certain to see a birth. Using the cdf we can answer other questions (next slide).



The likelihood function for waiting times (continuous
random variables)

Let As represent a small positive change in a realized waiting time, so that (s,s + As) is a
small time interval. Then, according to the above calculation we have that

P(s < S<s+As)=F(s+As) — F(s)

and dividing both sides of the equation by At we get a measure of the density of probability
over the interval (s, s + As).

P(s<S<s+As) F(s+As)— F(s)

As As



The likelihood function for waiting times (continuous
random variables)

Let As represent a small positive change in a realized waiting time, so that (s,s + As) is a
small time interval. Then, according to the above calculation we have that

P(s < S<s+As)=F(s+As) — F(s)

and dividing both sides of the equation by At we get a measure of the density of probability
over the interval (s, s+ As).

P(s<S<s+As) F(s+As)— F(s)

As As
As As — 0, the ratio above converges to the derivative of F'(s), denoted by fg(s):
. P(s<S<s+As) dF(s)
lim = =
As—0 As ds

fo(s) = re %

The derivative of F(s), fs(s) is the associated probability distribution function of the random
variable S. It is the continuous distribution’s equivalent to the probability mass function. Thus,
by analogy with the discrete case this is the mathematical object that will be used to define the
likelihood function, needed to estimate the parameter A\,



The likelihood function for waiting times (continuous
random variables)

Let As represent a small positive change in a realized waiting time, so that (s,s + As) is a
small time interval. Then, according to the above calculation we have that

P(s < S<s+As)=F(s+As) — F(s)

and dividing both sides of the equation by At we get a measure of the density of probability
over the interval (s, s+ As).

P(s<S<s+As) F(s+As)— F(s)

As As
As As — 0, the ratio above converges to the derivative of F'(s), denoted by fg(s):
. P(s<S<s+As) dF(s)
lim = =
As—0 As ds

fo(s) = re %

The derivative of F(s), fs(s) is the associated probability distribution function of the random
variable S. It is the continuous distribution’s equivalent to the probability mass function. Thus,
by analogy with the discrete case this is the mathematical object that will be used to define the
likelihood function, needed to estimate the parameter A, but not so fast!



The likelihood function for waiting times (continuous
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Suppose we have a collection of observations of the waiting times until the first birth
S1,S9,...,S, and we wish to use this info. to estimate the average number of births per
unit of time, 6.
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The likelihood function for waiting times (continuous
random variables)

Suppose we have a collection of observations of the waiting times until the first birth
S1,S9,...,S, and we wish to use this info. to estimate the average number of births per
unit of time, 6.

Before, we've defined the likelihood as “the joint probability of the observations evaluated at
the data at hand”. In continuous time, such probabilities are 0!

How do we write down the likelihood function then?

Suppose that the precision of time-measuring instrument is € > 0. Then, we may calculate the
exact likelihood function (Kalbfleisch 1985, Sprott 2000, Pawitan 2001), which consists, for a
single observation s;, of the probability measure over a small interval surrounding the

P(81—§<S§81—|—g):F(81—|—§>—F(81—§).

observation:



The likelihood function for waiting times (continuous
random variables)

Using the mean value theorem,

P<51—§<S§81+§>:F<81—|——)—F(31——>%€f(81)



The likelihood function for waiting times (continuous
random variables)

Using the mean value theorem,

P(31—§<S§51+§):F(S1+§)—F(S1—§)%€f(81),

and the likelihood for the set of recorded waiting times until the first birth is

€ € € € € €
P<Sl_§<sl§31+§752_§<SZ§82+§7”°7571_§<Sn§3n+§):

P(81—§<Sl§81+§)P(82—§<52§82—|—§>...P(Sn—§<5nSSn—l—g),

which can be approximated with

fs(s1)fs(s2) ... fs(sn)€".



The likelihood function for waiting times (continuous
random variables)

Using the mean value theorem,

P(31—§<S§51+§):F(S1+§)—F(S1—§)%€f(81),

and the likelihood for the set of recorded waiting times until the first birth is

€ € € € € €
P<Sl_§<sl§31+§752_§<SZ§82+§7”°7571_§<Sn§3n+§):

P(81—§<SlSSl—l—g)P(SQ—%<SQ§82—|—§>...P(Sn—§<5n§8n—|—g>.

Which can be approximated with

fs(s1)fs(s2) ... fs(sn)€".

Some comments are in order

e Usual undergrad math /stats books: “likelihood for continuous models is the pdf evaluated
at the observations”.
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likelihood function
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Comments. ..

e The above arguments show that such definition is in fact an approximation to the exact
likelihood function

e Some critique the likelihood function because the profile based on the pdf approximation
can have singularities

e However, when the exact likelihood is computed, such numerical problems disappear: the
exact likelihood it is a product of cdf values, hence always bounded between 0 and 1!!

(Exemplified in Montoya et al 2009)

e To estimate the parameter ¢, one has to maximize fs(s1)fs(s2) ... fs(s,)€e" with respect
to 0

e Amounts to maximizing fs(s1)fs(s2) ... fs(sn) only if € does not depend on ¢

e Such dependence can occur if the size of the mean number of events per unit of time
affects the precision of the instrument (exhausted batteries?)



The ML estimate of ¢ from waiting times data

Finally, if € does not depend on #, then

L(0) o< fs(s1)fs(s2) .- fs(sn).

and the log-likelihood is
InL(f) o< In (0"exp—0>_" | s;)

= nlnf—0>"" s,

which allows us to comput the ML estimate of 6:

dint(0) _ n n o
B = 7 2.im15=0

= 0=

_n 1
diysi &

If the data consists of the waiting times until the k" event, denoted S}, then the preceding
argument can be extended.
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N(t) ~ Poisson(6t).



Waiting time until the kth event

—0 n
As before, we count the number of births up to time ¢, where p,(t) = et%. That is,

N(t) ~ Poisson(6t).

Now let S; > 0 be a continuous random variable modeling the waiting time until the £ birth
occurs. Let s denote a realization of S. Consider the following two events:

[IN(s) < k]and [S) > 5]



Waiting time until the kth event

—0 n
As before, we count the number of births up to time ¢, where p,(t) = et%. That is,

N(t) ~ Poisson(6t).

Now let S; > 0 be a continuous random variable modeling the waiting time until the £ birth
occurs. Let s denote a realization of S. Consider the following two events:

[IN(s) < k]and [S) > 5]
These two events are in fact the same event, so P|[N(s) < k] = P[S; > s| and we can use our
Poisson model for N(s) to find that

k—1
Fi(s)=P(Sy <s)=1—-P(N(s) <k)=1-)

6—(93)(98)n

n!

, (0 < s < 00),

which is the cdf of S;.



Waiting time until the kth event

—0 n
As before, we count the number of births up to time ¢, where p,(t) = et%. That is,

N(t) ~ Poisson(6t).

Now let S; > 0 be a continuous random variable modeling the waiting time until the £ birth
occurs. Let s denote a realization of S. Consider the following two events:

[IN(s) < k]and [S) > 5]
These two events are in fact the same event, so P|[N(s) < k] = P[S; > s| and we can use our

Poisson model for N(s) to find that

k—1
Fi(s)=P(Sy <s)=1—-P(N(s) <k)=1-)

6—(93)(98)n

n!

, (0 < s < 00),

which is the cdf of S;. Just as with the exponential model, we can find the probability density
function of the waiting time until capturing the k™ by taking the derivative of F}(s) with
respect to s



Waiting time until the kth event

k—1 e~ (05)(ps)n
fSk(S) - C%g 1 — Zn:() n'( :




Waiting time until the kth event
S n —(0s n —(0s),, x—1pn
e R =



Waiting time until the kth event

d k—1 e 0s)gs)n] k—1 fe=(05)(9s)"  o—(05), 501 gn
— ds 1 — ano n! - ZTL:O o n! + n!

|



Waiting time until the kth event

n! n!

k—1 96—(98)(93)71 o—(05),, x—1gn
T Zn:() |:_ +

n! n!

[pe—(0s) (6s)" e(@s)nsnlen:|

-en—i-le—(@s)sn k—1 gngn—1,—0s
n! o anl (n—1)!



/{jth

Waiting time until the event

_d k—1 e W)@gsn] k—1 fe—(As) (9s)n —(0s) 52— 1gn
fSk(S) — ds 1_Zn:0T — _Zn:() o n! + < i

n!

n=0 n! n!

zk—l _06_(98)(68)n 6(05)n3”19”:|

. Zk_l -9n+1€—(95)8ni| B Zk_l grgn—1o—0s

Now, factor out the term e~% and explicitly write down the sums:

9/{'718/{72 Hkskfl

2 63 2

fels)=e"



Waiting time until the kth event
—1 e~ O3)(ps)n — e—(As) g\ e—(0s),, sx—1gn
fopls) = [1 = Sy O] = iy [ e o]

n! n!

o k—1 _06_(98)(68)n e (05)pgn—1gn
- Zn:()

. E—1 -en—i-le—(@s)sn k—1 gngn—1,—0s
_ ano i n! i| o anl (n—l)!
Now, factor out the term e~% and explicitly write down the sums:

9/{'718/{72 Hkskfl

2 63 2

fels)=e"
93 2 ek—l k—2
_9 - 628 - 2_? T e e e (k_52)‘




/{jth

Waiting time until the event

_d k—1 e W)@gsn] k—1 fe—(As) (9s)n —(0s) 52— 1gn
fSk(S) — ds 1_Zn:0T — _Zn:() o n! + < i

n!

o k—1 _06_(98)(68)n e (05)pgn—1gn
- Zn:() o

n! n!

. E—1 -en—i-le—(@s)sn k—1 gngn—1,—0s
_ ano i n! i| o anl (n—l)!
Now, factor out the term e~% and explicitly write down the sums:

9/{'718/{72 Hkskfl

2 63 2

fk(s) — ¢ 0s
93 2 ek—l k—2
—0— 0% — U — -

We get a telescoping sum: all the terms cancel except the last one!



Waiting time until the kth event

d k—1 —(0s) 05" k—1 0 —(\s) 0s5)" —(0s) 33—1971,
fSk(S):£ 1_271:0& = _ZTL:O [_ € (6s) 1€ ns

n! n! n!

o k—1 _96_(98)(93)” e~ (03)pgn—1gn
- Zn:() o

n! n!

. E—1 _9n+16—(9$8n k—1 gngn—1,—0s
— ano i n! i| o anl (n—l)!
Now, factor out the term e~% and explicitly write down the sums:

Qk‘—lsk‘—Z eksk—l
=2 T (=)

0+0%+ 07+ .+
fk(s)ze—ﬁs

3.2 k—1_k-2
0 — p25 — s AN i

o T T T2

We get a telescoping sum: all the terms cancel except the last one! Therefore, the above
equation reduces to

fi(s) =

e—GsekSk—l
k— 1)

0 < s < 00, which is a Gamma pdf.
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Waiting time until the event

We got that
G_QSQkSk_l

fe(s) = =1

Therefore, the likelihood function for a series of independent observations of the waiting times

0 < s < 00, which is a Gamma pdf.

until the k™ birth, 51, s9,..., s, is (if € does not depend on 6)

L(0) o< fs,(s1)fs,(s2) - .- [s,(sn)-



Waiting time until the kth event

We got that
6_95€k8k_1
fi(s) = TR 0 < s < 00, which is a Gamma pdf.
Therefore, the likelihood function for a series of independent observations of the waiting times
until the £ birth, s, so,..., s, is (if € does not depend on )

L(0) o< fs,(s1)fs,(s2) ... [s,(sn).

Note: Using the general formulation of the gamma pdf we get that

P(S<s) = [ %sk_le_esds

—s6
= >, enﬁ, which is the right tail of the initial Poisson model.

Thus, the right tail (i.e. from k to o) of our initial probabilistic model of the number of births
during a period of time s is in fact identical to the left tail of the resulting gamma model of the
waiting time until the £™ birth occurs.



The likelihood function and further inference questions

e A biologist might not necessarily be interested in estimating the parameters but rather, in
knowing which scenario best explains the data (i.e. Does p vary per sex, season, year,
according to rain,. . .)

e How can the likelihood function help us decide amongst a suite of models?

— Answer, case 1: pairwise model selection

— Answer, case 2: multiple models

e Example: Are the non-linearities introduced by the theta-Ricker model necessary to explain
a time series with demographic and environmental stochasticities?



The likelihood function for the model with environmental
and demographic stochasticities:

Let A ~ Gamma(k, o) represent the environmental noise and let each individual have a Poisson
offspring distribution then we saw that the transition pdf was

(g1 + k Q g n s
P<Nt+1 = nt+1’Nt = nt) — ( s ) ( ) ( L ) ;

C(k)ngy! \pe + npr +
where
Py = exp {—b nf} for theta-Ricker model.
Given a time series data set consisting of the (exact) counts ng, n1, ..., n,, then the likelihood

function for the parameters 6 = [k, «, b, 0]'is again the joint pmf of the population sizes
Ny, ..., N, evaluated at the data at hand:
qg—1
L(0) = | [ P(Ney = niga| Ny = me).
t=0
If Ny is an observation from the stationary distribution of the process, then
qg—1
L(H) = P(N() = 77,0) X ““P<Nt_|_1 = ntH]Nt = nt).
t=0




The likelihood function and further inference questions

e A biologist might not necessarily be interested in estimating the parameters but rather, in
knowing which scenario best explains the data (i.e. Does p vary per sex, season, year,
according to rain,. . .)

e How can the likelihood function help us decide amongst a suite of models?

— Answer, case 1: pairwise model selection

— Answer, case 2: multiple models

e Example: Are the non-linearities introduced by the theta-Ricker model necessary to explain
a time series with demographic and environmental stochasticities?

Hy:0=1, andweletk,a,bvary freely

Hy,:0+#1. We let all the parameters vary freely.



A generalization of the theta-Ricker modeling question:
Large sample Likelihood Ratio Tests

Consider the following setting, where the null (restricted) hypothesis is given by

H019:90: [C,QQ,@g,...,Qr].

Ly1,(00) is maximized at 8y = [c, 05,03, ..., 6,].
and the alternative (unrestricted) hypothesis is

H1 . 9:90: [917‘92793;---7‘97‘]
LHl(B) Is maximized at b\ = [él, ég, ég, ce ,ér]



A generalization of the theta-Ricker modeling question:
Large sample Likelihood Ratio Tests

Consider the following setting, where the null (restricted) hypothesis is given by

H019:90: [0,92,63,...,97:].

Ly1,(00) is maximized at 8y = [c, 05,03, ..., 6,].
and the alternative (unrestricted) hypothesis is

H1 . 9:90: [917‘92793;---7‘97‘]
LHl(B) Is maximized at b\ = [él, ég, ég, ce ,ér]

Alternatively, H specifies 8 as depending on ¢ < r underlying parameters:

61 — h1(€17£27°'°7€q>
0r = h(§1,62,-..,&)



Generalized Likelihood Ratio Test

Theorem (Samuel Wilks): under regularity conditions, if Hy is true, then the statistic

G?* = —2lnA = —2In LHO(?P) i)x%5>,
LHl(e)

where s = number of restrictions = r — ¢ = number of parameters estimated under H;—

number of parameters estimated under H|

e The parameters under the null can be made a function of ¢ other parameters (¢ < ).
e Regularity conditions are the same as those of ML estimation (See Dennis & Taper 1994)!
e The alternative model is not restricted

e Decision rule: Reject Hy in favor of Hy if GZ,_ > X%S)(oz), where « = significance level.



Generalized Likelihood Ratio Tests and Confidence
Intervals

A 100(1 — )% Cl for 6, is the set of all ¢'s for which Hy would not be rejected at a
significance level a.
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Generalized Likelihood Ratio Tests and Confidence
Intervals

A 100(1 — )% Cl for 6, is the set of all ¢'s for which Hy would not be rejected at a

significance level a. Reject Hy if G%,, > X%)(a),

B Ly, (6o)
= —2In [LH1 (5)]

\Y
=
g

— 9 [m Ly (60) — In Ly, (5)] > (@)

= In LHl(@\) — In LHO(éO) >

X%l) () g

= In Ly, (0) — -2 >



Generalized Likelihood Ratio Tests and Confidence
Intervals

A
In Lyo(60)

-53.5 -53.0 -525 -520 -51.5

-54.0

I I I I I I I
0.890 0.895 0.900 0.905 0910 0.915 0.920

values of ¢

Remember that 8y = |c, QNQ, Os, . .. 0, ]

maximize r—1 params.

and that 6 = [91, 05,05, ... ,QT] .
maximizggparams.

2 «

Now Xm; ) 3'243 = 1.9215so reject Hy if
“ X%l)(a) =

In Ly, (0) — —5— = In Lz, (6o)

= In Ly, (6) — 1.9215 > In Ly, (6p)



Generalized Likelihood Ratio Tests and Confidence
Intervals

Remember that 8y = |c, ég, Os, . .. 0, ]

maximize r—1 params.

-51.5

and that @ = Lél’ ég, ég, e ,érl.

-~

-52.0

3 5 maximize r params.

= 3 @ g - -
' Now, ——5— = =5 = 1.9215 so reject H if
v A = X%l)(a) ~
E L 0 In LHI(Q) - 5 2 In LHO(HO)

I I I I I I I
0.890 0.895 0.900 0.905 0910 0.915 0.920

values of ¢ = In LH1 (b\) —1.9215 > In LHO(éO)



Generalized Likelihood Ratio Tests and Confidence
Intervals

In Lyo(Bo)

-53.5 -53.0 -525 -520 -51.5

-54.0

|/

AL Xa
In Lyq(84) - =
/ H1( 1) 2

I I I I I I I
0.890 0.895 0.900 0.905 0910 0.915 0.920

values of ¢

Remember that 8y = |c, ég, Os, . .. 0, ]

maximize r—1 params.

and that @ = Lél’ ég, ég, e ,érl.

LY
maximize r params.

2 «

Now Xm; ) 3'243 = 1.9215so reject Hy if
“ X%l)(a) =

In Ly, (0) — —5— = In Lz, (6o)

= In Ly, (6) — 1.9215 > In Ly, (6p)



L(p)/L(P)

RL(p)
0.4

1.0

0.8

0.6

0.2

0.0

The relative likelihood function

Relative likelihood: L(p)/L(p)

0.86

0.88 0.90 0.92 0.94

values of p

Maximizing L(p) : set%;p) = 0, solve forp

1 dL(p) _
Amounts to set o A = 0, solve for p.

That is,

_ p)ni—l_ni

dnL 24 -1\ 1
dp<p) — dip [Zizl 1H< nf)p (1

24 24
=17 =1 Mol _
p (1-p)




Generalized Likelihood Ratio Tests and Confidence
Intervals

Remember that 8y = [c, ?2, fs, ... 0, ]

maximize r—1 params.

i A

S and that @ = [01,05,05,....,0,].
— 0 maximiz;;params.
‘j = Xa)(o‘) 3.843 : :
£ 81 o Now, —5— = =5 = 1.9215 s0 reject H if

o InLu(®) -7

' / 6 \ In LHI(G) — 1.9215 2 In LHO(HO)

2 1

©Q T T T T T T T

0890 0895 0900 0905 0910 0915 0.920 Profile likelihood CI: the set of values
values of ¢

of ¢ for which we fail to reject Hy!



InL(6)

-30

-40

-50

-60

Fisher’s information and asymptotic Wald’s C.I.

0.6

0.7

0.9

Let X7, Xo, ..., X, be a sample of size n, X;iid orind.
Likelihood: f(x;0) = f(x1, 22, ...,2,;0) and if X, discrete

:P(X1:.CUl,XQZ.CIZQ,...,Xn:CL’n).

Now define Z(0) = Fx ([%ln f(x; (9)}2> :

2
Under certain conditions Z(0) = —FEx ([5—;11& f(x; (9)} ) :
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Remember that 8y = [c, ?2, fs, ... 0, ]

maximize r—1 params.
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Fisher’s information and asymptotic Wald’s C.I.

Let X7, Xo, ..., X, be a sample of size n, X;iid orind.

Likelihood: f(x;0) = f(x1, 22, ...,2,;0) and if X, discrete

-30

-40

:P(X1:.CUl,XQ:ZCQ,...,Xn:CL’n).

InL(6)

-50

Now define Z(0) = Fx ([%ln f(x; (9)}2> :

-60

06 07 0.8 09 1.0 2
0 Under certain conditions Z(0) = —FEx ([5—;11& f(x; 9)} ) :

Theorem (Abraham Wald): The random variable 6-% N (6, [Z(6)]™}) as n — oo. It follows

A

. -1
that an approximate (1 — «)100% C.I. for 0 is given by 0 & 2,9 [I(@)} . As sample size

grows large, Wald's C.I.'s and the profile likelihood C.l.'s are equivalent. Coverage properties!



Fisher’'s Information: 2 or more parameters

01 1
0 — 9_1 X — L1
0, Zn
The likelihood is written as the joint pd]z of _Xl, . ,X_n eva_luated at ’Ehe obseArvations
Ty1,..., T, and is denoted as L(0) = f(x;0). The ML estimates 01,01, ..., 0,] are the values

of the parameters that jointly maximize L(80), i.e. the roots of

( Oln L(6)

901 0
onL(0)

{ o, =0
élnL(G) .

|20



Fisher’s Information for 2 or more parameters

In the multivariate case, Fisher's information is written as Z(0) = —FE[H(0)], where
- Oln L(6) Oln L(0) Oln L(0) 7
39% 001009 060100,
| OnL(B) 0lnL(0) Jln L(6)
H(O) o 009001 8(9% Tt 00900,
Jln L(6) 0Oln L(0) Jln L(8)
| 96,90, 06,005 " 002

The Hessian matrix evaluated at the ML estimates and multiplied by —1 is called the
“Observed information matrix”,

~ d%InL(0) o
J@) = LN
{ 00,00, }

~ 71 ~ 711 N
Either [I(H)] or [J(H)} are statistically consistent estimates of the variance of 0



Wald’s theorem and regularity conditions

Under regularity conditions on L(8), the random variable 65N (6,[Z(0)] ") and an

. -1
approximate (1 — «)100% C.I. for 6; is given by 6; z&/g\/{ [I(H)] } -

Regularity conditions roughly say that:

1. @ cannot be on the boundary of the parameter space.
2. The range of the X;'s cannot depend on 6

3. When multi-modal likelihoods appear, all bets are off!! (And this happens very often.)



Model Selection: Akaike’s Information Criterion

Let f(x) and g(x) be two joint pdf's (pmf’s) -the likelihood- modeling in two different ways a
biological phenomenon. Then the ratio f(x)/g(x) gives us an idea of how much more likely is
one model relative to the other one.
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how far away from the truth is the model.



Model Selection: Akaike’s Information Criterion

Let f(x) and g(x) be two joint pdf's (pmf’s) -the likelihood- modeling in two different ways a
biological phenomenon. Then the ratio f(x)/g(x) gives us an idea of how much more likely is
one model relative to the other one. Now, the Kullback-Leibler Divergence

f()

K(f(e).g(a) = Bx [1n (2]

g(x)
tells us, on average, how much more likely is g(z) relative to f(x). Suppose f(x) is an
(unknown) stochastic mechanism that generates the data, the truth. Now suppose g(z) is the
model that we are trying to use to describe the data. Then, the above expectation expresses
how far away from the truth is the model. Some properties of the K-L distance are

L K(f(z),9(x)) =0 = f(z) = g(z)
2. K(f(x),9(x)) =0,
3. Value of § that minimizes K (f(z), g(x,0)) is the MLE of 6, 6.



K-L divergence as a model comparison tool

The difference in K-L divergence between each of two different models and the truth,i.e.,

K(f(x), g1(z;61)) — K(f(x), g2(; 02)).

can be used to compare one model against the other, but don't know f(x)!
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where p; = # of model parameters estimated with the data.
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estimate of the expected, relative K-L distance between the generating model and the
proposed model.



K-L divergence as a model comparison tool

The difference in K-L divergence between each of two different models and the truth,i.e.,

K(f(x), g1(z;61)) — K(f(x), g2(; 02)).

can be used to compare one model against the other, but don't know f(x)! However, Akaike
showed that a statistically consistent estimate of

K(f(z),gi(x;6;))is given by AIC; = —21nL(éZ~) + 2 X p;,

where p; = # of model parameters estimated with the data.

e If you have a series of models, the decision rule is to pick the model for which the AIC is
the smallest.

e AIC is a frequentist concept: over hypothetical repeated sampling, it is a consistent
estimate of the expected, relative K-L distance between the generating model and the
proposed model.

e Other information criteria and future research questions with this topic will be covered in
next talk.



Observation Error (Real life happens. . .)



General model accounting for sampling error:
State-space models

o Let X; be a d.t. Markov process. Let the conditional density function of X; given
X1 = x4-1 be g(ay|zi-1,0).
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General model accounting for sampling error:
State-space models

e Let X; be a d.t. Markov process. Let the conditional density function of X; given
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e If both g and f are linear Gaussian conditional distributions then the resulting model is
called a linear state-space model (LSSM), or dynamic linear model (DLM).



General model accounting for sampling error:
State-space models

e Let X; be a d.t. Markov process. Let the conditional density function of X; given
Xi_1 = 241 be g(x|wi-1,0).

e Conditional on X}, the observations process Y; is another random variable with pdf given

by f(yilz, ¢):
(state equation): Xo| Xyo1 ~ g(x|xi_q,0),

(observation equation): Y| Xy ~ f(.|xt, @).

e If both g and f are linear Gaussian conditional distributions then the resulting model is
called a linear state-space model (LSSM), or dynamic linear model (DLM).

o In general L(6,6) = [ f(y[X. 6)g(x: 6)dX.

e Need computer intensive methods to calc. the likelihood for non-linear, non-gaussian
models.



Observation error & density-independence

Animal years Analysis Trend (SE) Process Sampling P(Lower

Method Variance Variance Threshold) ¥

GB 39 Dennis 0.0213 (0.0185) 0.0131 0.40
REML 0.0211 (0.0148) 0.0082 0.0023 0.24

wC 56 Dennis 0.0377 (0.0187) 0.0194 0.32
REML 0.0372 (0.0159) 0.0137 0.0028 0.21

cC 16 Dennis -0.0768 (0.0885) 0.1176 1.00
REML -0.0948 (0.0131) 0* 0.0579 1.00

PP 21 Dennis 0.0273 (.0275) 0.0151 0.33
REML 0.0273 (.0275) 0.0151 0* 0.33

* estimates at boundary

+ Probability of population size reaching lower threshold equal to 0.75 of last population size.

Table 1. Parameter estimates and risk metric comparisons for Dennis et al. and REML-
based methods.

Staples, Taper and Dennis, 2004. Estimating population trend and process variation for PVA in the presence of sampling error. Ecology 85:923-929.



Observation error and density-dependence

The stochastic Gompertz model

N, = N,_ell@ttn(Ne—1)+0E]

Let 2y = In(n;) and take ¢ = b+ 1, then we have a first-order autoregressive process
(Reddingius, 1971, Dennis and Taper 1994):

Xt = Xt—l +a+ bXt_l + Et
= a-+ CXt_l + Et

Density independence is expressed through b = 0 or ¢ = 1. For |c| < 1 the stationary
distribution exists and:

E[Xs] = lim E[X)] = —

t—00 1—C

2
Var Xy = lim Var[Xy] =

t—00 1 — CQ




Stochastic Gompertz with observation error:

e Let Y, be the estimated logarithmic population abundance, such that:

Y, = Xi + F
= CL‘|‘CXt_1‘|‘Et‘|‘Ft
= a+ C(}/t—l — Ft—l) + Et + Ft,
where F; ~ N(0, 7).

e The Markov property is lost: it is an ARMA model (Autorregresive Moving Average
process).

e There is extra info. in the autocorrelation structure about o2 and 72.

e The ML parameter estimates are obtained via the Kalman filter (lots of conditioning) or

using MVN:



The Multivariate Normal model:

No observation error: we have a series of recorded observations
Loy, L1y Tyg-

Assuming X arises from the stationary distribution, the joint pdf of Xy, X;,... X, = X has

the following distribution:
X ~ MVN(pu, )

where
/1 c . cq\
5 c 1 ¢ ...t
o 9 9
> = c C 1 ...
1 —c2 :
\cq =1 12 c )
and
— a 1
:Lb_l_c.la

j being a (¢ + 1) x 1 vector of ones.



The Multivariate Normal model:

With observation error: given the observations,yy, y1, . . . y,, the joint pdf of Y, Y7,... Y, is
multivariate normal: writing Y = X + F, we get

Y ~ MVN(y, V)

where 11 = 1], j being a (¢ + 1) x 1 vector of ones, and V = X + 7°I. The variance
covariance matrix of the process is:

[ 52 4+ 7_2 co? 22 g2 ]
1—c? 1—c? 1—c? 1—c?
co? o2 + 7_2 co? 1152
1—c? 1—c2 1—c? 1—¢2
V = 2o? co? o2 + 7_2 4252
1—c2 1—c2 1—c2 1—c?

g2 1152 12452 o2 + 7_2
| 1—c? 1—c? 1—c? 1—c? _

Therefore, the log-likelihood needed for parameter estimation is:

q+1 1 N
- SO =V y = p)

(First differences log-likelihood -REML- can also be obtained and behave nicely)

InL(a,c, 0 7°) =

1
In(27) — 51n|V| —



Log-profile likelihoods
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Estimated proportion of observation error: ~ 70 %
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Dennis, B., Ponciano, J.M., Lele, S., Taper, M.L., Staples, D.F. 2006. Estimating
density-dependence, process noise and observation error. Ecol. Monogr. 76: 323-341



Replicated Sampling
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Replicated Sampling for the GSS model

e Let Y, be the estimated logarithmic population abundance, such that:

Yi = Xio + F
= a+cXy1+E +F
= CL—I—C(}/t_l—Ft_l)—l‘Et—FFt,

e If at time step ¢, p; replicates are taken yielding observations Y, = [Y14, Yo, Yar, . .. Y]/,
then we write:
Y; =) X + Fy,
where j; is a p; x 1 vector of ones, F; ~ MV N(0, 72I;) and I is a p; X p; identity matrix.

e The likelihood of the observations from t = 0 to t = ¢ is the joint pdf of Y} given
Yi1=Yi1,Yr2=Yt-2,---, Y0 = Yo



Replicated Sampling for the GSS model

e The likelihood is multivariate normal and its mean and variance changes with time. The
Kalman recursions can also be used here.

e Let J, be a p; X p; matrix of ones and, let j; be a p; X 1 vector of ones and I, be the
pr X p; identity matrix.

e Using the stationary distribution for X ~ N (g, ?), it is found that E[Y] = jopo = my
and that Var[Y,| = ¢¥?J, + 721,



Replicated Sampling for the GSS model

e [ he Kalman recursions are:

He = a+¢ [Mt—l + i Vi (e — mt—1)} ;
@th = 02%2—1 [1 - ¢t2—1j;§—1vt_—11jt—1] + 02;
m; = jt,LLt,

Vt = thg—l + 7'2]:15.
e And the full likelihood function (assuming we start at the stationary distribution) is:

L(a,¢,0%,7%) = L(yo) L(y1|y0) L(y2ly1, ¥0) - - - (¥4l, Y41, --¥0)

- _ | ¢ )
= (2m) p/z(‘VOHVﬂ [ Vgl) 12 exp 5 Z(Yt —my)' Vi (y; —my) |,
t=0

where p = py +p1 + ...+ p,.



Log-profile likelihoods
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MCMC and computer intensive methods

Next time!



