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Gymnogyps californianus
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Dendroica kirtlandii
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Arctocephallus gazella

can be sustained by the environment has been attained
and growth rate slows down, and from 1996 onwards has
been close to zero [mean=2.5±12.5 (95%C.I.)] (Fig. 4).

Discussion

Population modelling

Although the logistic model used in this study is of a
simple nature, it has been helpful to explain current

trends in growth rates. The scatter in the data also
implies that a more complicated model than the one
used here is not justified, and in the absence of other
information, the logistic is to be preferred because of
its simplicity alone (principle of parsimony). However,
in order to identify which factor(s) determine popula-
tion dynamics, a switch to a process-based model that
encompasses relevant factors will be fundamental in
order to further understand the population dynamics of
A. gazella at the study site and investigate the forces

Fig. 4 Antarctic fur-seal pup
production at Cape Shirreff and
San Telmo Islets, South
Shetlands (1966–2002) with 3%
error bars. The fitted line
corresponds to the logistic
model parameterized by
K=9294; t50=1991; r=0.2625.
Also shown in boxes is the
percent rate of increase for
different periods and the
standard error of the mean
(SEM) for the series ranging
from 1992 to 2002

Fig. 5 Antarctic fur-seal
pre-exploitation and current
population numbers at Cape
Shirreff. Note the order of
magnitude difference between
virginal and present population
levels [and associated carrying
capacities (Kt)]. These Ks
correspond to total population
estimates for both historical
and present periods (see
Discussion for further
explanations)
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Respiratory Syncytial Virus

times the probability that an infected individual successfully
passes on the infection times the total number of available
susceptibles in the population. That is,

C(I ,N)
I

N
S~b

I

Iza

I

N
S,

which is Liu’s and Hethcote and van den Driessche’s model
with p~2 and q~1. This incidence rate function explicitly
states that the transmission rate is proportional to the number
of available susceptible individuals S and that the constant of
proportionality is a function of the number of infected
individuals. Also, we would like to stress that, by taking into
account the per-individual variability in dispersion abilities, this
formulation of the incidence rate function goes from individual-
based processes to population-wide patterns in disease
transmission. The effect of different hypotheses pertaining
individual-based contagion processes into the population-level
disease transmission processes could be tested by proposing
different -biologically meaningful- probability distributions of
the infected individuals potential to disperse the disease.

Many other functional forms h(I ,S) for the incidence rate could
be derived using the above arguments. If for instance other heavy-
tailed distributions are used instead of the exponential distribution,
other incidence rate functional forms will arise and this could
certainly be the topic of further research. However, in this work we
limit ourselves to the exploration of the reaches of using the LHD
model because it explicitly incorporates heterogeneity in trans-
mission potential, because of its bi-stability properties (see
‘‘qualitative analysis of the SIRS models’’ section) and to formally
test if it arises as a better explanation for bi-annual epidemic
patterns using data from different localities and diseases. Thus,
from this point on, in this work we will only consider the LHD

incidence rate function and the classical incidence rate b(I=N)S.
In his seminal paper, Hethcote [1] also mentions that the LHD
general incidence rate function could be eventually coupled with
any seasonal forcing function. Motivated by this comment, in the
results section we explore the reaches of doing so.

Materials and methods
RSV data analysis. The parameters for the SIRS model with

two different incidence rate functions were estimated viamaximum
likelihood [40] using time series data from two localities in Gambia
and in Finland (Figure 1, data kindly provided by Prof. A. Weber,
see also [9]). For each geographical locality, the data consists of the
pairs f(y0,t0),(y1,t1), . . . ,(yq,tq)g, where yj denote the reported
number of cases (i.e. incidence) at time tj , for a total of q time steps.
In both localities the size of the time step is a month. Because the
data of infected individuals consists of counts, a natural and simple
statistical sampling model is the Poisson distribution [17,41–43].
Heterogeneity in sampling effort or other sources of heterogeneity
in the sampling scheme could be accounted for using the negative
binomial distribution, but we consider that the Poisson model is a
fairly robust description of the situation faced with this data sets
(see [42], sub-section ‘‘Observation error models’’ in the ‘‘Discus-
sion’’). Therefore, we assumed that the observations yj , j~0, . . . ,q
are independent realizations of a Poisson distribution Yj whose
mean changes according to the deterministic model predictions.
Let I j(h) be the predicted number of new cases between times
j{1 and j by a SIRS model evaluated at the vector of parameters
h, that is::

I j(h)~

ðtj

tj{1

b(t)
I

N
Sdt

for the classic SIRS model and

Figure 1. Observed time series of infected individuals in Gambia and Finland. Plotted are the monthly number of reported syncytial virus
cases in two cities: Banjul in Gambia (from October 1991 to September 1994) and Turku in Finland (from October 1981 to March 1990). Plotted also is
the mean monthly temperature range for both localities, for the same time spans.
doi:10.1371/journal.pcbi.1001079.g001

Modeling Incidence Rates in Seasonal Epidemics
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Gause’s Paramecia experiment

three different sets of priors. The priors with smaller
variances produced posteriors that were closer to the actual
ML estimates, even if such priors were substantially biased.
As well, the standard errors obtained with the data cloning
method were quite close to the estimates of the ML
standard errors arising from the Fisher information matrix
(Table 2).

Stochastic Ricker model with Poisson errors

Gause’s (1934) laboratory experiments on the population
growth of two Paramecium species (P. aurelia, P. caudatum) are
the iconic illustrations of sigmoidal growth curves in ecology
textbooks. Although Gause and textbooks alike plotted
mean abundance across replicate cultures, the individual
replicate cultures display considerable stochastic variability
(Fig. 2). The variability is a combination of stochasticity in
the process itself as well as observation error in the data.
Earlier analyses have used either process noise or observa-
tion error, but not both (Pascual & Kareiva 1996). Gause
sampled the microbe populations by counting the number
of cells in a small volume (0.5 cm3) of growth media
removed from well-mixed cultures. The sampling mechan-
ism can be reasonably modelled with a Poisson distribution,
with mean equal to the concentration of cells per volume
sampled in the culture.

We analysed Gause’s experimental data (species growing
separately) with a Ricker-Poisson state-space model. The
underlying population growth process in the Ricker-Poisson
is a stochastic version of the Ricker model (Dennis & Taper
1994), and the sampling error model is Poisson. The Ricker-
Poisson state-space model is given by

Nt ¼ Nt"1 expða þ bNt"1 þ EtÞ;

Ot & PoissonðNtÞ:

Here, Nt is population abundance (cells per volume) of a
culture at time t (days), Ot is the cells per volume in the
sample at time t, and the process noise Et has a nor-

mal(0,r2) distribution. For this model, the parameter a (not
the coefficient parameter b) measures the strength of density
dependence, because it is related to the eigenvalue of the
deterministic one-dimensional map near equilibrium (May &
Oster 1976). The parameter b serves to scale the level of the
equilibrium population size. We define one unit of volume
to be the volume of a sample, 0.5 cm3. The initial cell
concentration in the cultures was set experimentally and is
therefore treated as a known parameter in the model. All
cultures were started with exactly two cells per unit volume.

The likelihood function for time series observations
arising from this stochastic Ricker-Poisson model cannot be
written down in an analytical form. To complicate matters,
Gause did not record data for any of the cultures at time

Table 2 Maximum likelihood estimates (and standard errors) calculated for the parameters a, c, r and s in the Gompertz state-space model,
using numerical maximization (first column) and data cloning with three different sets of prior distributions (second, third, fourth columns)

Parameters ML estimates Data cloning 1 Data cloning 2 Data cloning 3

a 0.3929 (0.5696) 0.3956 (0.5509) 0.4136 (0.4640) 0.4103 (0.5876)
c 0.7934 (0.3099) 0.792 (0.2999) 0.7821 (0.2524) 0.7839 (0.3202)
r 0.3119 (0.2784) 0.3132 (0.2751) 0.3217 (0.2262) 0.3207 (0.2934)
s 0.4811 (0.1667) 0.4802 (0.1562) 0.4768 (0.1492) 0.4764 (0.1816)

All data cloning estimates used k ¼ 240 clones. Data cloning 1: priors were normal(0,1), uniform()1,1), lognormal()0.5,10), lognormal(0,1)
[notation is normal(mean,variance), uniform(lower bound, upper bound), lognormal(normal mean, normal variance)]. Data cloning 2: priors
were normal(0,10 000), uniform()1,1), lognormal(0,10 000), lognormal(0,10 000). Data cloning 3: priors were normal(3,1), uniform()1,1),
normal()2,100), lognormal(0,10). Data were time series abundances of American Redstart (Setophaga ruticilla), from a survey location in the
North American Breeding Bird Survey; numerical values appear in Table 1 of Dennis et al. (2006).

Figure 2 Population abundances of two Paramecium species, three
replicate cultures each (solid lines), from Gause (1934: Appendix I,
Table 3), plotted with solution trajectories from deterministic
Ricker population growth model (dashed lines). Upper three time
series: P. aurelia. Lower three time series: P. caudatum. Ricker
solution trajectories use maximum likelihood parameter estimates
from the Ricker-Poisson state-space model, computed with data
cloning for the combined replicates (Table 3).

Letter Data cloning 557
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Talk central question

• Question: Can we use stochastic population models to improve management strategies

for a population of interest and better understand the biological processes driving the

dynamics?
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Talk central question

• Question: Can we use stochastic population models to improve management strategies

for a population of interest and better understand the biological processes driving the

dynamics?

• Answer: Probably yes, provided we build those models to seek first biological

understanding of a population of interest, rather than mathematical convenience.

• The statistical methodology should therefore:

1. be informed by the nature of the data and

2. be informed by and inform the probabilistic model-building process using Markov Chains
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Gause’s experiment: explaining deviations from
deterministic model

three different sets of priors. The priors with smaller
variances produced posteriors that were closer to the actual
ML estimates, even if such priors were substantially biased.
As well, the standard errors obtained with the data cloning
method were quite close to the estimates of the ML
standard errors arising from the Fisher information matrix
(Table 2).

Stochastic Ricker model with Poisson errors

Gause’s (1934) laboratory experiments on the population
growth of two Paramecium species (P. aurelia, P. caudatum) are
the iconic illustrations of sigmoidal growth curves in ecology
textbooks. Although Gause and textbooks alike plotted
mean abundance across replicate cultures, the individual
replicate cultures display considerable stochastic variability
(Fig. 2). The variability is a combination of stochasticity in
the process itself as well as observation error in the data.
Earlier analyses have used either process noise or observa-
tion error, but not both (Pascual & Kareiva 1996). Gause
sampled the microbe populations by counting the number
of cells in a small volume (0.5 cm3) of growth media
removed from well-mixed cultures. The sampling mechan-
ism can be reasonably modelled with a Poisson distribution,
with mean equal to the concentration of cells per volume
sampled in the culture.

We analysed Gause’s experimental data (species growing
separately) with a Ricker-Poisson state-space model. The
underlying population growth process in the Ricker-Poisson
is a stochastic version of the Ricker model (Dennis & Taper
1994), and the sampling error model is Poisson. The Ricker-
Poisson state-space model is given by

Nt ¼ Nt"1 expða þ bNt"1 þ EtÞ;

Ot & PoissonðNtÞ:

Here, Nt is population abundance (cells per volume) of a
culture at time t (days), Ot is the cells per volume in the
sample at time t, and the process noise Et has a nor-

mal(0,r2) distribution. For this model, the parameter a (not
the coefficient parameter b) measures the strength of density
dependence, because it is related to the eigenvalue of the
deterministic one-dimensional map near equilibrium (May &
Oster 1976). The parameter b serves to scale the level of the
equilibrium population size. We define one unit of volume
to be the volume of a sample, 0.5 cm3. The initial cell
concentration in the cultures was set experimentally and is
therefore treated as a known parameter in the model. All
cultures were started with exactly two cells per unit volume.

The likelihood function for time series observations
arising from this stochastic Ricker-Poisson model cannot be
written down in an analytical form. To complicate matters,
Gause did not record data for any of the cultures at time

Table 2 Maximum likelihood estimates (and standard errors) calculated for the parameters a, c, r and s in the Gompertz state-space model,
using numerical maximization (first column) and data cloning with three different sets of prior distributions (second, third, fourth columns)

Parameters ML estimates Data cloning 1 Data cloning 2 Data cloning 3

a 0.3929 (0.5696) 0.3956 (0.5509) 0.4136 (0.4640) 0.4103 (0.5876)
c 0.7934 (0.3099) 0.792 (0.2999) 0.7821 (0.2524) 0.7839 (0.3202)
r 0.3119 (0.2784) 0.3132 (0.2751) 0.3217 (0.2262) 0.3207 (0.2934)
s 0.4811 (0.1667) 0.4802 (0.1562) 0.4768 (0.1492) 0.4764 (0.1816)

All data cloning estimates used k ¼ 240 clones. Data cloning 1: priors were normal(0,1), uniform()1,1), lognormal()0.5,10), lognormal(0,1)
[notation is normal(mean,variance), uniform(lower bound, upper bound), lognormal(normal mean, normal variance)]. Data cloning 2: priors
were normal(0,10 000), uniform()1,1), lognormal(0,10 000), lognormal(0,10 000). Data cloning 3: priors were normal(3,1), uniform()1,1),
normal()2,100), lognormal(0,10). Data were time series abundances of American Redstart (Setophaga ruticilla), from a survey location in the
North American Breeding Bird Survey; numerical values appear in Table 1 of Dennis et al. (2006).

Figure 2 Population abundances of two Paramecium species, three
replicate cultures each (solid lines), from Gause (1934: Appendix I,
Table 3), plotted with solution trajectories from deterministic
Ricker population growth model (dashed lines). Upper three time
series: P. aurelia. Lower three time series: P. caudatum. Ricker
solution trajectories use maximum likelihood parameter estimates
from the Ricker-Poisson state-space model, computed with data
cloning for the combined replicates (Table 3).

Letter Data cloning 557
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Motivating example: population growth

The Stochastic Ricker Model (Dennis and Taper 1994):

Nt+1 = Nt exp [a + bNt + σZt] where Zt ∼ iid N(0, 1)
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Deterministic model
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Progeny:

3 offspring

Deterministic model
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Time
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Deterministic model

Environmental noise model:
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Assumptions of the Stochastic Ricker Model

“Cartoon” assumptions:

• This is a population model: “all individuals are equal” (same offspring production, same

survival).

• All individuals reproduce and survive independently of each other.

• Environmental noise is non-autocorrelated /phenomenological.
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Assumptions of the Stochastic Ricker Model

“Cartoon” assumptions:

• This is a population model: “all individuals are equal” (same offspring production, same

survival).

• All individuals reproduce and survive independently of each other.

• Environmental noise is non-autocorrelated /phenomenological.

Biologically useful assumptions:

• The growth rate of the population varies randomly from year to year. The environment

affects (equally) every individual in the population (good years, bad years).

• Density-dependence: instead of reaching a carrying capacity point, the population reaches a

stationary distribution, a cloud of points around which it fluctuates.
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However simple, the density independent Stochastic Ricker model Nt+1 = Nt{a + σEt} allows

us to do “Population Viability Analysis”:

Dennis, Munholland and Scott. 1991. Estimation of growth and extinction parameters from

endangered species. Ecol. Monogr. 61:115-143

• Explicit expression for the probability of extinction within s years using a diffusion

approximation (Stochastic Differential Equations).

• Explicit expression for the expected time until extinction.
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Viability Population Monitoring and estimating trends in
P(extinction)
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Taper, Ponciano, Shepard, Muhlfeld and Staples. Risk-based viable population monitoring of the upper Flathead bull trout. Submitted to Ecol.
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Demographic stochasticity: ‘starting from scratch’

• Demographic stochasticity models variability in demographic traits, like reproduction and

survival.

• It is not obvious how to combine demographic stochasticity with environmental noise in a

general way.

• This problem lead us to try to formulate/understand a model of environmental noise plus

demographic sotchasticity from scratch.
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Average progeny

per parent per year:

3 offspring

Demographic stochasticity model: each individual has the same offspring distribution
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Time
‘Bad’ year:

Average of progeny distribution

is depressed by a random quantity

Average progeny

per parent per year:

3 offspring

Demographic stochasticity model: each individual has the same offspring distribution

Environmental noise and demographic

stochasticity model:

‘Good’ year:

Average of progeny distribution

is enhanced by a random quantity

So a model with Environmental noise and demographic stochasticity

is by nature a hierarchical stochastic model, where the mean of the

demographic process becomes itself a random variable when

environmental noise is introduced.
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Average ‘u’ progeny per parent is different, it is

-a quantitative character -

that can be seen as drawn from a population probability

distribution.

Demographic variability and genetic heterogeneity:

Average num.

offspring u1
Average num.

offspring u2
Average num.

offspring u3
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‘Good’ year:

Average of every progeny distribution is enhanced by a random quantity or alternatively,

“what is a good year for some is a bad year for others”

Average ‘u’ progeny per parent is different, it is

-a quantitative character -

that can be seen as drawn from a population probability

distribution. This distribution is shifted by the enviro. noise

Environmental noise, demographic variability and genetic

heterogeneity:

Average num.

offspring u1’
Average num.

offspring u2’
Average num.

offspring u3’



14

Setting:

• (Nt) be a discrete-time, discrete state stochastic process that models the

(density-dependent) growth of a population. Furthermore, let nt denote population size at

time t.
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Setting:

• (Nt) be a discrete-time, discrete state stochastic process that models the

(density-dependent) growth of a population. Furthermore, let nt denote population size at

time t.

• Let Xi, i = 1, 2, . . . , nt be iid random variables denoting the number of offspring born to

individual i (non-overlapping gens.), and g(x), x = 0, 1, 2, . . . be the pmf of Xi with mean

and variance E[Xi] = λ and V[Xi] = φ2, respectively.

• Let Yt =
∑nt

i=1Xi be the total number of offspring born between times t and t + 1.

• Finally, let pt be the density dependent probability of survival of each offspring born at time

t. For ex.: pt = exp{−b nt}(Ricker), Gompertz model: pt = exp{−b lnnt}, Theta-Ricker

model, pt = exp
{
−b nθt

}
, and the Hassell model pt = 1/(1 + b nt)

c.
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Setting:

• (Nt) be a discrete-time, discrete state stochastic process that models the

(density-dependent) growth of a population. Furthermore, let nt denote population size at

time t.

• Let Xi, i = 1, 2, . . . , nt be iid random variables denoting the number of offspring born to

individual i (non-overlapping gens.), and g(x), x = 0, 1, 2, . . . be the pmf of Xi with mean

and variance E[Xi] = λ and V[Xi] = φ2, respectively.

• Let Yt =
∑nt

i=1Xi be the total number of offspring born between times t and t + 1.

• Finally, let pt be the density dependent probability of survival of each offspring born at time

t. For ex.: pt = exp{−b nt}(Ricker), Gompertz model: pt = exp{−b lnnt}, Theta-Ricker

model, pt = exp
{
−b nθt

}
, and the Hassell model pt = 1/(1 + b nt)

c.

• Each individual survives independently from each other w.p. pt.
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Demographic Stochasticity:

Conditional on Yt = y, the total number of survivors for next generation is binomially

distributed with parameters y and pt. It follows that the moments of the conditional process

(Nt+1|Nt = nt) are

E[Nt+1|Nt = nt] = E [E [Nt+1|(Nt = nt, Yt)]] = λntpt,

V[Nt+1|Nt = nt] = E [V [Nt+1|(Nt = nt, Yt)]] + V [E [Nt+1|(Nt = nt, Yt)]]

=
[
λpt(1− pt) + φ2p2

t

]
nt.

(1)

Example: Xi ∼ Poisson(λ)⇒ (Nt+1|Nt = nt) ∼ Poisson(λntpt).
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Environmental Stochasticity:

• Defined as the case wherein one or more of the vital rates, say, the mean of the offspring

distribution, varies randomly over time.
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population get the same vital rate value.
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• In that sense, the biological justification of the formulation of an environmental noise model

is to allow for changes over time on the location of the offspring distribution.
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Environmental Stochasticity:

• Defined as the case wherein one or more of the vital rates, say, the mean of the offspring

distribution, varies randomly over time.

• In the absence of demographic noise, within a single year, all the individuals in the

population get the same vital rate value.

• In the presence of demographic noise and enviro. noise, the offspring distribution that

characterizes all the individuals in the population changes its location parameter every year.

• That is, during “good years” the mean of the offspring distribution of the individuals in the

population increases and during “bad years” it decreases.

• In that sense, the biological justification of the formulation of an environmental noise model

is to allow for changes over time on the location of the offspring distribution.

• Yet, because for very few probability distributions the mean is not a function of the

variance, it is difficult to conceive practical models where only the mean of the offspring

distribution is affected and not its variance.
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Population size moments under demographic variability
and environmental noise

Let Wt be a r.v. for the value of the mean of the offspring distribution at time t. At a given

time t, Wt = wt
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• Xi ∼ g(x,wt) is each individual’s offspring distribution.
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Population size moments under demographic variability
and environmental noise

Let Wt be a r.v. for the value of the mean of the offspring distribution at time t. At a given

time t, Wt = wt

• Xi ∼ g(x,wt) is each individual’s offspring distribution.

• E[Xi|Wt = wt] = wt and V[Xi|Wt = wt] = φ2(wt).
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Population size moments under demographic variability
and environmental noise

Let Wt be a r.v. for the value of the mean of the offspring distribution at time t. At a given

time t, Wt = wt

• Xi ∼ g(x,wt) is each individual’s offspring distribution.

• E[Xi|Wt = wt] = wt and V[Xi|Wt = wt] = φ2(wt).

• If Yt =
∑nt

i=1Xi, then, conditioning on Wt = wt (keep that in mind), E[Yt] = wtnt and

V[Yt] = ntφ
2(wt).
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Population size moments under demographic variability
and environmental noise

Let Wt be a r.v. for the value of the mean of the offspring distribution at time t. At a given

time t, Wt = wt

• Xi ∼ g(x,wt) is each individual’s offspring distribution.

• E[Xi|Wt = wt] = wt and V[Xi|Wt = wt] = φ2(wt).

• If Yt =
∑nt

i=1Xi, then, conditioning on Wt = wt (keep that in mind), E[Yt] = wtnt and

V[Yt] = ntφ
2(wt).

• Now assume that (Nt+1|Nt = nt,Wt = wt, Yt) ∼ Binomial(Yt, pt).
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Population size moments under demographic variability
and environmental noise

Let Wt be a r.v. for the value of the mean of the offspring distribution at time t. At a given

time t, Wt = wt

• Xi ∼ g(x,wt) is each individual’s offspring distribution.

• E[Xi|Wt = wt] = wt and V[Xi|Wt = wt] = φ2(wt).

• If Yt =
∑nt

i=1Xi, then, conditioning on Wt = wt (keep that in mind), E[Yt] = wtnt and

V[Yt] = ntφ
2(wt).

• Now assume that (Nt+1|Nt = nt,Wt = wt, Yt) ∼ Binomial(Yt, pt).

• Averaging over all the possible values of Yt (given that wt is fixed), then, for that particular

year t we get that
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Environmental and demographic noise continued

E[Nt+1|Nt = nt,Wt = wt] = E [E [Nt+1|(Nt = nt,Wt = wt, Yt)]] = wtntpt,

V[Nt+1|Nt = nt,Wt = wt] = E [V [Nt+1|(Nt = nt,Wt = wt, Yt)]]

+V [E [Nt+1|(Nt = nt,Wt = wt, Yt)]]

=
[
wtpt(1− pt) + φ2(wt)p

2
t

]
nt.

(2)
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Environmental and demographic noise continued

E[Nt+1|Nt = nt,Wt = wt] = E [E [Nt+1|(Nt = nt,Wt = wt, Yt)]] = wtntpt,

V[Nt+1|Nt = nt,Wt = wt] = E [V [Nt+1|(Nt = nt,Wt = wt, Yt)]]

+V [E [Nt+1|(Nt = nt,Wt = wt, Yt)]]

=
[
wtpt(1− pt) + φ2(wt)p

2
t

]
nt.

(3)

Now, averaging over all the the possible values of the Environmental process, we get that the

general moments of (Nt+1|Nt = nt) are:

E[Nt+1|Nt = nt] = E [E [Nt+1|(Nt = nt,Wt)]] = E[Wt]ntpt,

V[Nt+1|Nt = nt] = E [V [Nt+1|(Nt = nt,Wt)]] + V [E [Nt+1|(Nt = nt,Wt)]]

=
[
E[Wt]pt(1− pt) + E[φ2(Wt)]p

2
t

]
nt + (ntpt)

2V[Wt].

(4)
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An example with exact transition probability mass
function:

If we let λ ∼ Gamma(k, α) represent the environmental noise and let each individual have a

Poisson offspring distribution then we get that

P (Nt+1 = nt+1|Nt = nt) =
Γ(nt+1 + k)

Γ(k)nt+1!

(
α

ntpt + α

)k(
ntpt

ntpt + α

)nt+1

,

where

pt =



e−bnt for Ricker model

exp
{
−b nθt

}
for theta-Ricker model

exp{−b lnnt} for Gompertz model

1/(1 + b nt)
c for Hassell’s model

1/(1 + (a− 1)(nt/K)β) for Below’s model

Ponciano, J.M. et al in prep. Demographic stochasticity, environmental noise and sampling error: implications for conservation biology.
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Simulation Example: Demographic and Environmental
Stochasticities
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Statistical Inference for Markovian population models
models

• Discrete state, discrete time Markov processes

• Discrete state, continuous time

• Continuous state, discrete time

• Accounting for sampling error

• Continuous time, continuous states: next talk
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Introducing the likelihood function: a Chain-Binomial
model

• Field work: Monthly census of extant individuals from a closed population that reproduces

every 5 years, for 24 months

• No reproduction occurs during those 24 months

• Data: Number of survivors at the end of each one of the 24 months (no sampling error):

n1, n2, . . . , n24, starting at n0 = known cst.

• We want to study the survival process during those 24 months.
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Introducing the likelihood function: a Chain-Binomial
model

• Probabilistic model of the biological process: consider a discrete time, discrete state

Markov process {N}t that models only the survival process from one unit of time to the

other (from one month to the next).

• Let pij = P (Nt+1 = j|Nt = i), assume n0 is a fixed quantity and let

pij =

(
i

j

)
pi(1− p)i−j, j = 0, 1, . . . , i

• We have a complete probabilistic description of the observations, except we don’t know p!

• Biological questions of interest: Does p changes from one year to the other? From season

to season? Between sexes or ages?
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The likelihood function

It is the joint probability of the observations Nt evaluated at the recorded data (the nt), which,

according to the Markov property is:

L(p) = P (N1 = n1, N2 = n2, . . . , N24 = n24) =
∏24

i=1 P (Ni = ni|Ni−1 = ni−1)

=
∏24

i=1

(
ni−1
ni

)
pni(1− p)ni−1−ni
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The relative likelihood function
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0.
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1.
0

Relative likelihood: L(p) L(p̂)

values of p

R
L(
p)

=
L(
p)
L(
p̂)

p̂ = 0.906

MaximizingL(p) : set dL(p)
dp = 0, solve for p

Amounts to set 1
L(p)

dL(p)
dp = 0, solve for p.

That is,

d lnL(p)
dp = d

dp

[∑24
i=1 ln

(
ni−1
ni

)
pni(1− p)ni−1−ni

]
⇒ d lnL(p)

dp ∝
∑24
i=1 ni
p −

∑24
i=1 ni−1−ni

(1−p) = 0

⇒ p̂ =
∑24
i=1 ni∑24
i=1 ni−1

= 0.906
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The likelihood function for the model with environmental
and demographic stochasticities:

Let λ ∼ Gamma(k, α) represent the environmental noise and let each individual have a Poisson

offspring distribution then we saw that the transition pdf was

P (Nt+1 = nt+1|Nt = nt) =
Γ(nt+1 + k)

Γ(k)nt+1!

(
α

ntpt + α

)k(
ntpt

ntpt + α

)nt+1

,

where

pt = exp
{
−b nθt

}
for theta-Ricker model.

Given a time series data set consisting of the (exact) counts n0, n1, . . . , nq, then the likelihood

function for the parameters θ = [k, α, b, θ]′is again the joint pmf of the population sizes

N1, . . . , Nq evaluated at the data at hand:

L(θ) =

q−1∏
t=0

P (Nt+1 = nt+1|Nt = nt).

If N0 is an observation from the stationary distribution of the process, then

L(θ) = P (N0 = n0)×
q−1∏
t=0

P (Nt+1 = nt+1|Nt = nt).
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Estimating parameters of a continuous time, discrete
states MC

Consider a pure birth process where

P [N(t + δt) = n + 1|N(t) = n] = (δt)λn
P [N(t + δt) = n|N(t) = n] = 1− (δt)λn
P [more than 1 birth in time δt] = negligible,

where λn = λn. This is an exponential-type growth rate model due to births. Observations of

N(t) at times 0 < t1 < t2 < . . . < tq yield the pairs

(t0, n0), (t1, n1), (t2, n2), . . . , (tq, nq).

Remember that the transition pmf is a translated negative binomial

pn(t) = P [N(t) = n|N(0) = n0] =

(
n− 1

n0 − 1

)(
exp−λt

)n0 (1− exp−λt
)n−n0 , n = n0, n0+1, n0+2, . . .

To get the total likelihood of the realized observations we write down the transition pmf of each

step and use the Markov property.
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Estimating parameters of a continuous time, discrete
states MC

Transition pmf:

P [N(ti) = ni|N(ti−1) = ni−1] =
(
ni−1
ni−1−1

) (
exp−λ(ti−ti−1)

)ni−1 (1− exp−λ(ti−ti−1)
)ni−ni−1

= f (ni, ti − ti−1|ni−1)
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Estimating parameters of a continuous time, discrete
states MC

Transition pmf:

P [N(ti) = ni|N(ti−1) = ni−1] =
(
ni−1
ni−1−1

) (
exp−λ(ti−ti−1)

)ni−1 (1− exp−λ(ti−ti−1)
)ni−ni−1

= f (ni, ti − ti−1|ni−1)

Let τ1 = t1 − 0, τ2 = t2 − t1, . . . , τq = tq − tq−1 (not necessarily evenly spaced).
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Estimating parameters of a continuous time, discrete
states MC

Transition pmf:

P [N(ti) = ni|N(ti−1) = ni−1] =
(
ni−1
ni−1−1

) (
exp−λ(ti−ti−1)

)ni−1 (1− exp−λ(ti−ti−1)
)ni−ni−1

= f (ni, ti − ti−1|ni−1)

Let τ1 = t1 − 0, τ2 = t2 − t1, . . . , τq = tq − tq−1 (not necessarily evenly spaced).

Then, the likelihood function necessary to connect the model with data is given by

L(λ) = f (n1, n2, . . . , nq|n0) = f (n1, τ1|n0)f (n2, τ2|n1) . . . f (nq, τq|nq−1)

=
∏q

i=1

(
ni−1
ni−1−1

) (
exp−λ(τi)

)ni−1 (1− exp−λ(τi)
)ni−ni−1



46

Confronting multiple birth process models to data using
the likelihood

Model: a pure birth process with λn = θ + λn (immigration + births).
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Confronting multiple birth process models to data using
the likelihood

Model: a pure birth process with λn = θ + λn (immigration + births).

Case 1: suppose λ = 0 (nothing but immigrations), n0 = 0. Then pn(t) = e−θt(θt)n

n! .
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Confronting multiple birth process models to data using
the likelihood

Model: a pure birth process with λn = θ + λn (immigration + births).

Case 1: suppose λ = 0 (nothing but immigrations), n0 = 0. Then pn(t) = e−θt(θt)n

n! .

Case 2: λ > 0, n0 = 0 (Immigration and births). Then

pn(t) =

( θ
λ + n− 1

n

)(
e−λt

) θ
λ
(
1− e−λt

)n
.
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Confronting multiple birth process models to data using
the likelihood

Model: a pure birth process with λn = θ + λn (immigration + births).

Case 1: suppose λ = 0 (nothing but immigrations), n0 = 0. Then pn(t) = e−θt(θt)n

n! .

Case 2: λ > 0, n0 = 0 (Immigration and births). Then

pn(t) =

( θ
λ + n− 1

n

)(
e−λt

) θ
λ
(
1− e−λt

)n
.

Case 3: let λ < 0 and − θ
λ be an integer so that λn = θ+λn if n < θ

λ and 0 if n ≥ − θ
λ. Then

pn(t) =

(
− θ
λ

n

)(
1− eλt

)n0 (eλt)− θλ−n .
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Confronting multiple birth process models to data using
the likelihood

Model: a pure birth process with λn = θ + λn (immigration + births).

Case 1: suppose λ = 0 (nothing but immigrations), n0 = 0. Then pn(t) = e−θt(θt)n

n! .

Case 2: λ > 0, n0 = 0 (Immigration and births). Then

pn(t) =

( θ
λ + n− 1

n

)(
e−λt

) θ
λ
(
1− e−λt

)n
.

Case 3: let λ < 0 and − θ
λ be an integer so that λn = θ+λn if n < θ

λ and 0 if n ≥ − θ
λ. Then

pn(t) =

(
− θ
λ

n

)(
1− eλt

)n0 (eλt)− θλ−n .
In any case, if the observations (t0, n0), (t1, n1), (t2, n2), . . . , (tq, nq) are recorded, the likelihood

function is written as

L(λ, θ) = p(n1, τ1|n0)p(n2, τ2|n1) . . . p(nq, τq|nq−1)
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Example: a continuous time stochastic SIS model

SIS ODE model:
dI

dt
=
β

N
S(I + ε)− gI

S = N − I = # of susceptibles, N = total pop. size (cst.)

β is the contact rate,

ε =import of infection from an external source (ε = 0 if pop. is isolated)

g = recovery rate

Analogous to Levins 1969 metapopulation model (Hosts are empty (S) or occupied(I)).
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Example: a continuous time stochastic SIS model

SIS ODE model:
dI

dt
=
β

N
S(I + ε)− gI

S = N − I = # of susceptibles, N = total pop. size (cst.)

β is the contact rate,

ε =import of infection from an external source (ε = 0 if pop. is isolated)

g = recovery rate

Analogous to Levins 1969 metapopulation model (Hosts are empty (S) or occupied(I)).

Stochastic version: the states are I = 0, 1, . . . , N. At t = 0, I(0) = k. So P (I(0) = k) = 1

and

P (I(t) = i) = pi(t) = P (I(t) = i|X(0) = k).
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Kolmogorov-Forward equation

If the process is in state i at time t, then at time t + ∆t it will be either at state i + 1, i− 1 or

i (∆t chosen so that at most 1 event occur). Therefore,

pi(t + ∆t) = pi−1(t)(∆t)
[
β
NS(t)(I(t) + ε)

]
+ pi+1(t)(∆t)gI(t)

+pi(t)
[
1− (∆t) βNS(t)(I(t) + ε) + gI(t)

]
.

Hence
pi(t+∆t)−pi(t)

∆t = pi−1(t)
[
β
NS(t)(I(t) + ε)

]
+ pi+1(t)(∆t)gI(t)

−pi(t)
[
β
NS(t)(I(t) + ε) + gI(t)

]
,

and since S = N − I ∀ t, and letting ∆t→ 0 we get

dpi(t)

dt
= pi−1(t)

β

N
(N − i + 1)(i− 1 + ε) + pi+1(t)g(i + 1)− pi(t)

[
β

N
(N − i)(i + ε) + gi

]
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The transition rates matrix Q

In vector notation,

dpi(t)

dt
= pi−1(t)

β

N
(N − i + 1)(i− 1 + ε) + pi+1(t)g(i + 1)− pi(t)

[
β

N
(N − i)(i + ε) + gi

]
becomes dp

dt = pQ, where dim(p) = 1× (N + 1) and dim(Q) = (N + 1)× (N + 1) :
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The transition rates matrix Q

In vector notation,

dpi(t)

dt
= pi−1(t)

β

N
(N − i + 1)(i− 1 + ε) + pi+1(t)g(i + 1)− pi(t)

[
β

N
(N − i)(i + ε) + gi

]
becomes dp

dt = pQ, where dim(p) = 1× (N + 1) and dim(Q) = (N + 1)× (N + 1) :

Q =



−βε βε 0 0 . . .

g −
[
β
N (N − 1)(1 + ε) + g

]
β
N (N − 1)(1 + ε) 0 . . .

0 2g −
[
β
N (N − 2)(2 + ε) + 2g

]
β
N (N − 2)(2 + ε) . . .

0 0 3g −
[
β
N (N − 3)(3 + ε) + 3g

]
. . .

0 0 0 4g . . .
...

...
...

...
. . .


.
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The transition rates matrix Q

In vector notation,

dpi(t)

dt
= pi−1(t)

β

N
(N − i + 1)(i− 1 + ε) + pi+1(t)g(i + 1)− pi(t)

[
β

N
(N − i)(i + ε) + gi

]
becomes dp

dt = pQ, where dim(p) = 1× (N + 1) and dim(Q) = (N + 1)× (N + 1) :

Q =



−βε βε 0 0 . . .

g −
[
β
N (N − 1)(1 + ε) + g

]
β
N (N − 1)(1 + ε) 0 . . .

0 2g −
[
β
N (N − 2)(2 + ε) + 2g

]
β
N (N − 2)(2 + ε) . . .

0 0 3g −
[
β
N (N − 3)(3 + ε) + 3g

]
. . .

0 0 0 4g . . .
...

...
...

...
. . .


.

Solution to the system of ODEs: if p(0) = p0, then pt = p0 exp{Qt}
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Observing a realization of the process

• Observations at times t1 < t2 < . . . < tq−1 < tq. Let τi = ti − ti−1 as before.

• States: i1, i2, . . . , iq−1, iq
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The likelihood function

L(θ) = P (I(t1) = i1, I(t2) = i2, . . . , I(tq−1) = iq−1, I(tq) = iq)
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The likelihood function

L(θ) = P (I(t1) = i1, I(t2) = i2, . . . , I(tq−1) = iq−1, I(tq) = iq)

= P (I(t1) = i1)× P (I(t2) = i2|I(t1) = i1)× P (I(tq) = iq|I(tq−1) = iq−1)
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The likelihood function

L(θ) = P (I(t1) = i1, I(t2) = i2, . . . , I(tq−1) = iq−1, I(tq) = iq)

= P (I(t1) = i1)× P (I(t2) = i2|I(t1) = i1)× P (I(tq) = iq|I(tq−1) = iq−1)

= {pt1}i1 × {exp((t2 − t1)Q)}i1,i2 × {exp((t3 − t2)Q)}i2,i3 × . . .
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The likelihood function

L(θ) = P (I(t1) = i1, I(t2) = i2, . . . , I(tq−1) = iq−1, I(tq) = iq)

= P (I(t1) = i1)× P (I(t2) = i2|I(t1) = i1)× P (I(tq) = iq|I(tq−1) = iq−1)

= {pt1}i1 × {exp((t2 − t1)Q)}i1,i2 × {exp((t3 − t2)Q)}i2,i3 × . . .

= {pt1}i1 ×
∏q

k=2{exp(τkQ)}ik−1,ik



62

The likelihood function

L(θ) = P (I(t1) = i1, I(t2) = i2, . . . , I(tq−1) = iq−1, I(tq) = iq)

= P (I(t1) = i1)× P (I(t2) = i2|I(t1) = i1)× P (I(tq) = iq|I(tq−1) = iq−1)

= {pt1}i1 × {exp((t2 − t1)Q)}i1,i2 × {exp((t3 − t2)Q)}i2,i3 × . . .

= {pt1}i1 ×
∏q

k=2{exp(τkQ)}ik−1,ik

= {pt1}i1 ×
∏q

k=2{Iik−1 × exp(τkQ)}ik, where

Ij is a vector that has zeros everywhere, except in the jth position where it has a 1.
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The likelihood function

L(θ) = P (I(t1) = i1, I(t2) = i2, . . . , I(tq−1) = iq−1, I(tq) = iq)

= P (I(t1) = i1)× P (I(t2) = i2|I(t1) = i1)× P (I(tq) = iq|I(tq−1) = iq−1)

= {pt1}i1 × {exp((t2 − t1)Q)}i1,i2 × {exp((t3 − t2)Q)}i2,i3 × . . .

= {pt1}i1 ×
∏q

k=2{exp((tk − tk−1)Q)}ik−1,ik

= {pt1}i1 ×
∏q

k=2{Iik−1 × exp(τkQ)}ik, where

Ij is a vector that has zeros everywhere, except in the jth position where it has a 1.

Notes:Computing exp(τQ) can be done using a matrix exponentiation algorithm (only once

per each iteration of the maximization routine if all τk’s are equal). However, can greatly reduce

computations by calculating Ij exp(τQ) (a vector) instead of exp(τQ) (a matrix). These are

the so-called Krylov space methods. (Citation: On 19 dubious ways. . .)
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Matrix exponentiation

A matrix exponentiation is achieved using a T.S. expansion:

exp(τQ) = I + τQ +
τ 2

2!
Q2 +

τ 3

3!
Q3 + . . .
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Matrix exponentiation

A matrix exponentiation is achieved using a T.S. expansion:

exp(τQ) = I + τQ +
τ 2

2!
Q2 +

τ 3

3!
Q3 + . . .

Hence

Ij exp(τQ) = IjI + IjτQ + Ij
τ 2

2!
Q2 + Ij

τ 3

3!
Q3 + . . .
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Matrix exponentiation

A matrix exponentiation is achieved using a T.S. expansion:

exp(τQ) = I + τQ +
τ 2

2!
Q2 +

τ 3

3!
Q3 + . . .

Hence

Ij exp(τQ) = IjI + IjτQ + Ij
τ 2

2!
Q2 + Ij

τ 3

3!
Q3 + . . .

• However this is definitely NOT the way to compute it because of accumulation of numerical

round-off errors!
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Matrix exponentiation

A matrix exponentiation is achieved using a T.S. expansion:

exp(τQ) = I + τQ +
τ 2

2!
Q2 +

τ 3

3!
Q3 + . . .

Hence

Ij exp(τQ) = IjI + IjτQ + Ij
τ 2

2!
Q2 + Ij

τ 3

3!
Q3 + . . .

• However this is definitely NOT the way to compute it because of accumulation of numerical

round-off errors!

• A program to simulate and estimate parameters for this model using R will be reviewed in

the computer session in the afternoon.

• About simulation: with certain computer intensive methods for parameter estimation, all

we need is to simulate realizations from the process conditioned on the ending point. To do

that, use Hobolth and Stone (2009), Annals of Applied Statistics).
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Matrix exponentiation

A matrix exponentiation is achieved using a T.S. expansion:

exp(τQ) = I + τQ +
τ 2

2!
Q2 +

τ 3

3!
Q3 + . . .

Hence

Ij exp(τQ) = IjI + IjτQ + Ij
τ 2

2!
Q2 + Ij

τ 3

3!
Q3 + . . .

• However this is definitely NOT the way to compute it because of accumulation of numerical

round-off errors!

• A program to simulate and estimate parameters for this model using R will be reviewed in

the computer session in the afternoon.

• About simulation: with certain computer intensive methods for parameter estimation, all

we need is to simulate realizations from the process conditioned on the ending point. To do

that, use Hobolth and Stone (2009), Annals of Applied Statistics).

• Sampling error?
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The likelihood function for waiting times

Model: “Case 1” above. We count the number of births up to time t, where pn(t) = e−θt(θt)n

n! .

That is,

N(t) ∼ Poisson(θt).

Now let S > 0 be a continuous random variable modeling the waiting time until the first birth

occurs. Let s denote a realization of S. Consider the following two events:

[N(s) = 0] and [S > s]
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The likelihood function for waiting times

Model: “Case 1” above. We count the number of births up to time t, where pn(t) = e−θt(θt)n

n! .

That is,

N(t) ∼ Poisson(θt).

Now let S > 0 be a continuous random variable modeling the waiting time until the first birth

occurs. Let s denote a realization of S. Consider the following two events:

[N(s) = 0] and [S > s]

These two events are in fact the same event, so P [N(s) = 0] = P [S > s], which implies that

P (N(s) > 0) = 1− P (N(s) = 0) = P (S ≤ s).
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The likelihood function for waiting times

Model: “Case 1” above. We count the number of births up to time t, where pn(t) = e−θt(θt)n

n! .

That is,

N(t) ∼ Poisson(θt).

Now let S > 0 be a continuous random variable modeling the waiting time until the first birth

occurs. Let s denote a realization of S. Consider the following two events:

[N(s) = 0] and [S > s]

These two events are in fact the same event, so P [N(s) = 0] = P [S > s], which implies that

P (N(s) > 0) = 1− P (N(s) = 0) = P (S ≤ s).

Using our Poisson model for N(s), we then have that

F (s) = P (S ≤ s) = 1− P (N(s) = 0) = 1− e−λs, (0 < s <∞), which is the cdf of S.
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The likelihood function for waiting times

Model: “Case 1” above. We count the number of births up to time t, where pn(t) = e−θt(θt)n

n! .

That is,

N(t) ∼ Poisson(θt).

Now let S > 0 be a continuous random variable modeling the waiting time until the first birth

occurs. Let s denote a realization of S. Consider the following two events:

[N(s) = 0] and [S > s]

These two events are in fact the same event, so P [N(s) = 0] = P [S > s], which implies that

P (N(s) > 0) = 1− P (N(s) = 0) = P (S ≤ s).

Using our Poisson model for N(s), we then have that

F (s) = P (S ≤ s) = 1− P (N(s) = 0) = 1− e−λs, (0 < s <∞), which is the cdf of S.

Graphing this function we see that F (s) is simply telling us that if we wait long enough, we are

almost certain to see a birth. Using the cdf we can answer other questions (next slide).
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The likelihood function for waiting times (continuous
random variables)

Let ∆s represent a small positive change in a realized waiting time, so that (s, s + ∆s) is a

small time interval. Then, according to the above calculation we have that

P (s < S ≤ s + ∆s) = F (s + ∆s)− F (s)

and dividing both sides of the equation by ∆t we get a measure of the density of probability

over the interval (s, s + ∆s).

P (s < S ≤ s + ∆s)

∆s
=
F (s + ∆s)− F (s)

∆s
.
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The likelihood function for waiting times (continuous
random variables)

Let ∆s represent a small positive change in a realized waiting time, so that (s, s + ∆s) is a

small time interval. Then, according to the above calculation we have that

P (s < S ≤ s + ∆s) = F (s + ∆s)− F (s)

and dividing both sides of the equation by ∆t we get a measure of the density of probability

over the interval (s, s + ∆s).

P (s < S ≤ s + ∆s)

∆s
=
F (s + ∆s)− F (s)

∆s
.

As ∆s→ 0, the ratio above converges to the derivative of F (s), denoted by fS(s):

lim
∆s→0

P (s < S ≤ s + ∆s)

∆s
=
dF (s)

ds
= fS(s) = λe−θs.

The derivative of F (s), fS(s) is the associated probability distribution function of the random

variable S. It is the continuous distribution’s equivalent to the probability mass function. Thus,

by analogy with the discrete case this is the mathematical object that will be used to define the

likelihood function, needed to estimate the parameter λ,
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The likelihood function for waiting times (continuous
random variables)

Let ∆s represent a small positive change in a realized waiting time, so that (s, s + ∆s) is a

small time interval. Then, according to the above calculation we have that

P (s < S ≤ s + ∆s) = F (s + ∆s)− F (s)

and dividing both sides of the equation by ∆t we get a measure of the density of probability

over the interval (s, s + ∆s).

P (s < S ≤ s + ∆s)

∆s
=
F (s + ∆s)− F (s)

∆s
.

As ∆s→ 0, the ratio above converges to the derivative of F (s), denoted by fS(s):

lim
∆s→0

P (s < S ≤ s + ∆s)

∆s
=
dF (s)

ds
= fS(s) = λe−θs.

The derivative of F (s), fS(s) is the associated probability distribution function of the random

variable S. It is the continuous distribution’s equivalent to the probability mass function. Thus,

by analogy with the discrete case this is the mathematical object that will be used to define the

likelihood function, needed to estimate the parameter λ, but not so fast!
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The likelihood function for waiting times (continuous
random variables)

Suppose we have a collection of observations of the waiting times until the first birth

s1, s2, . . . , sn and we wish to use this info. to estimate the average number of births per

unit of time, θ.
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The likelihood function for waiting times (continuous
random variables)

Suppose we have a collection of observations of the waiting times until the first birth

s1, s2, . . . , sn and we wish to use this info. to estimate the average number of births per

unit of time, θ.

Before, we’ve defined the likelihood as “the joint probability of the observations evaluated at

the data at hand”. In continuous time, such probabilities are 0!

How do we write down the likelihood function then?
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The likelihood function for waiting times (continuous
random variables)

Suppose we have a collection of observations of the waiting times until the first birth

s1, s2, . . . , sn and we wish to use this info. to estimate the average number of births per

unit of time, θ.

Before, we’ve defined the likelihood as “the joint probability of the observations evaluated at

the data at hand”. In continuous time, such probabilities are 0!

How do we write down the likelihood function then?

Suppose that the precision of time-measuring instrument is ε > 0. Then, we may calculate the

exact likelihood function (Kalbfleisch 1985, Sprott 2000, Pawitan 2001), which consists, for a

single observation s1, of the probability measure over a small interval surrounding the

observation:

P
(
s1 −

ε

2
< S ≤ s1 +

ε

2

)
= F

(
s1 +

ε

2

)
− F

(
s1 −

ε

2

)
.
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The likelihood function for waiting times (continuous
random variables)

Using the mean value theorem,

P
(
s1 −

ε

2
< S ≤ s1 +

ε

2

)
= F

(
s1 +

ε

2

)
− F

(
s1 −

ε

2

)
≈ εf (s1)
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The likelihood function for waiting times (continuous
random variables)

Using the mean value theorem,

P
(
s1 −

ε

2
< S ≤ s1 +

ε

2

)
= F

(
s1 +

ε

2

)
− F

(
s1 −

ε

2

)
≈ εf (s1),

and the likelihood for the set of recorded waiting times until the first birth is

P
(
s1 −

ε

2
< S1 ≤ s1 +

ε

2
, s2 −

ε

2
< S2 ≤ s2 +

ε

2
, . . . , sn −

ε

2
< Sn ≤ sn +

ε

2

)
=

P
(
s1 −

ε

2
< S1 ≤ s1 +

ε

2

)
P
(
s2 −

ε

2
< S2 ≤ s2 +

ε

2

)
. . . P

(
sn −

ε

2
< Sn ≤ sn +

ε

2

)
,

which can be approximated with

fS(s1)fS(s2) . . . fS(sn)εn.
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The likelihood function for waiting times (continuous
random variables)

Using the mean value theorem,

P
(
s1 −

ε

2
< S ≤ s1 +

ε

2

)
= F

(
s1 +

ε

2

)
− F

(
s1 −

ε

2

)
≈ εf (s1),

and the likelihood for the set of recorded waiting times until the first birth is

P
(
s1 −

ε

2
< S1 ≤ s1 +

ε

2
, s2 −

ε

2
< S2 ≤ s2 +

ε

2
, . . . , sn −

ε

2
< Sn ≤ sn +

ε

2

)
=

P
(
s1 −

ε

2
< S1 ≤ s1 +

ε

2

)
P
(
s2 −

ε

2
< S2 ≤ s2 +

ε

2

)
. . . P

(
sn −

ε

2
< Sn ≤ sn +

ε

2

)
.

Which can be approximated with

fS(s1)fS(s2) . . . fS(sn)εn.

Some comments are in order

• Usual undergrad math/stats books: “likelihood for continuous models is the pdf evaluated

at the observations”.
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Comments. . .

• The above arguments show that such definition is in fact an approximation to the exact

likelihood function
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Comments. . .

• The above arguments show that such definition is in fact an approximation to the exact

likelihood function

• Some critique the likelihood function because the profile based on the pdf approximation

can have singularities
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Comments. . .

• The above arguments show that such definition is in fact an approximation to the exact

likelihood function

• Some critique the likelihood function because the profile based on the pdf approximation

can have singularities

• However, when the exact likelihood is computed, such numerical problems disappear: the

exact likelihood it is a product of cdf values, hence always bounded between 0 and 1!!

(Exemplified in Montoya et al 2009)
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Comments. . .

• The above arguments show that such definition is in fact an approximation to the exact

likelihood function

• Some critique the likelihood function because the profile based on the pdf approximation

can have singularities

• However, when the exact likelihood is computed, such numerical problems disappear: the

exact likelihood it is a product of cdf values, hence always bounded between 0 and 1!!

(Exemplified in Montoya et al 2009)

• To estimate the parameter θ, one has to maximize fS(s1)fS(s2) . . . fS(sn)εn with respect

to θ
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Comments. . .

• The above arguments show that such definition is in fact an approximation to the exact

likelihood function

• Some critique the likelihood function because the profile based on the pdf approximation

can have singularities

• However, when the exact likelihood is computed, such numerical problems disappear: the

exact likelihood it is a product of cdf values, hence always bounded between 0 and 1!!

(Exemplified in Montoya et al 2009)

• To estimate the parameter θ, one has to maximize fS(s1)fS(s2) . . . fS(sn)εn with respect

to θ

• Amounts to maximizing fS(s1)fS(s2) . . . fS(sn) only if ε does not depend on θ
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Comments. . .

• The above arguments show that such definition is in fact an approximation to the exact

likelihood function

• Some critique the likelihood function because the profile based on the pdf approximation

can have singularities

• However, when the exact likelihood is computed, such numerical problems disappear: the

exact likelihood it is a product of cdf values, hence always bounded between 0 and 1!!

(Exemplified in Montoya et al 2009)

• To estimate the parameter θ, one has to maximize fS(s1)fS(s2) . . . fS(sn)εn with respect

to θ

• Amounts to maximizing fS(s1)fS(s2) . . . fS(sn) only if ε does not depend on θ

• Such dependence can occur if the size of the mean number of events per unit of time

affects the precision of the instrument (exhausted batteries?)



88

The ML estimate of θ from waiting times data

Finally, if ε does not depend on θ, then

L(θ) ∝ fS(s1)fS(s2) . . . fS(sn).

and the log-likelihood is
lnL(θ) ∝ ln (θn exp−θ

∑n
i=1 si)

= nln θ − θ
∑n

i=1 si,

which allows us to comput the ML estimate of θ:

dln `(θ)
dθ = n

θ −
∑n

i=1 si = 0

⇒ θ̂ = n∑n
i=1 si

= 1
s̄.

If the data consists of the waiting times until the kth event, denoted Sk, then the preceding

argument can be extended.
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Waiting time until the kth event

As before, we count the number of births up to time t, where pn(t) = e−θt(θt)n

n! . That is,

N(t) ∼ Poisson(θt).
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Waiting time until the kth event

As before, we count the number of births up to time t, where pn(t) = e−θt(θt)n

n! . That is,

N(t) ∼ Poisson(θt).

Now let Sk > 0 be a continuous random variable modeling the waiting time until the kth birth

occurs. Let s denote a realization of S. Consider the following two events:

[N(s) < k] and [Sk > s]
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Waiting time until the kth event

As before, we count the number of births up to time t, where pn(t) = e−θt(θt)n

n! . That is,

N(t) ∼ Poisson(θt).

Now let Sk > 0 be a continuous random variable modeling the waiting time until the kth birth

occurs. Let s denote a realization of S. Consider the following two events:

[N(s) < k] and [Sk > s]

These two events are in fact the same event, so P [N(s) < k] = P [Sk > s] and we can use our

Poisson model for N(s) to find that

Fk(s) = P (Sk ≤ s) = 1− P (N(s) < k) = 1−
k−1∑
x=0

e−(θs)(θs)n

n!
, (0 < s <∞),

which is the cdf of Sk.
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Waiting time until the kth event

As before, we count the number of births up to time t, where pn(t) = e−θt(θt)n

n! . That is,

N(t) ∼ Poisson(θt).

Now let Sk > 0 be a continuous random variable modeling the waiting time until the kth birth

occurs. Let s denote a realization of S. Consider the following two events:

[N(s) < k] and [Sk > s]

These two events are in fact the same event, so P [N(s) < k] = P [Sk > s] and we can use our

Poisson model for N(s) to find that

Fk(s) = P (Sk ≤ s) = 1− P (N(s) < k) = 1−
k−1∑
x=0

e−(θs)(θs)n

n!
, (0 < s <∞),

which is the cdf of Sk. Just as with the exponential model, we can find the probability density

function of the waiting time until capturing the kth by taking the derivative of Fk(s) with

respect to s
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Waiting time until the kth event

fSk(s) = d
ds

[
1−

∑k−1
n=0

e−(θs)(θs)n

n!

]
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Waiting time until the kth event

fSk(s) = d
ds

[
1−

∑k−1
n=0

e−(θs)(θs)n

n!

]
= −

∑k−1
n=0

[
−θe−(θs)(θs)n

n! + e−(θs)nsx−1θn

n!

]
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Waiting time until the kth event

fSk(s) = d
ds

[
1−

∑k−1
n=0

e−(θs)(θs)n

n!

]
= −

∑k−1
n=0

[
−θe−(θs)(θs)n

n! + e−(θs)nsx−1θn

n!

]
=
∑k−1

n=0

[
θe−(θs)(θs)n

n! − e−(θs)nsn−1θn

n!

]
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Waiting time until the kth event

fSk(s) = d
ds

[
1−

∑k−1
n=0

e−(θs)(θs)n

n!

]
= −

∑k−1
n=0

[
−θe−(θs)(θs)n

n! + e−(θs)nsx−1θn

n!

]
=
∑k−1

n=0

[
θe−(θs)(θs)n

n! − e−(θs)nsn−1θn

n!

]
=
∑k−1

n=0

[
θn+1e−(θs)sn

n!

]
−
∑k−1

n=1
θnsn−1e−θs

(n−1)!
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Waiting time until the kth event

fSk(s) = d
ds

[
1−

∑k−1
n=0

e−(θs)(θs)n

n!

]
= −

∑k−1
n=0

[
−θe−(λs)(θs)n

n! + e−(θs)nsx−1θn

n!

]
=
∑k−1

n=0

[
θe−(θs)(θs)n

n! − e−(θs)nsn−1θn

n!

]
=
∑k−1

n=0

[
θn+1e−(θs)sn

n!

]
−
∑k−1

n=1
θnsn−1e−θs

(n−1)!

Now, factor out the term e−θs and explicitly write down the sums:

fk(s) = e−θs


θ + θ2s + θ3s2

2! + . . . + θk−1sk−2

(k−2)! + θksk−1

(k−1)!

−θ − θ2s− θ3s2

2! − . . .−
θk−1sk−2

(k−2)!
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Waiting time until the kth event

fSk(s) = d
ds

[
1−

∑k−1
n=0

e−(θs)(θs)n

n!

]
= −

∑k−1
n=0

[
−θe−(λs)(θs)n

n! + e−(θs)nsx−1θn

n!

]
=
∑k−1

n=0

[
θe−(θs)(θs)n

n! − e−(θs)nsn−1θn

n!

]
=
∑k−1

n=0

[
θn+1e−(θs)sn

n!

]
−
∑k−1

n=1
θnsn−1e−θs

(n−1)!

Now, factor out the term e−θs and explicitly write down the sums:

fk(s) = e−θs


θ + θ2s + θ3s2

2! + . . . + θk−1sk−2

(k−2)! + θksk−1

(k−1)!

−θ − θ2s− θ3s2

2! − . . .−
θk−1sk−2

(k−2)!
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Waiting time until the kth event

fSk(s) = d
ds

[
1−

∑k−1
n=0

e−(θs)(θs)n

n!

]
= −

∑k−1
n=0

[
−θe−(λs)(θs)n

n! + e−(θs)nsx−1θn

n!

]
=
∑k−1

n=0

[
θe−(θs)(θs)n

n! − e−(θs)nsn−1θn

n!

]
=
∑k−1

n=0

[
θn+1e−(θs)sn

n!

]
−
∑k−1

n=1
θnsn−1e−θs

(n−1)!

Now, factor out the term e−θs and explicitly write down the sums:

fk(s) = e−θs


θ + θ2s + θ3s2

2! + . . . + θk−1sk−2

(k−2)! + θksk−1

(k−1)!

−θ − θ2s− θ3s2

2! − . . .−
θk−1sk−2

(k−2)!

We get a telescoping sum: all the terms cancel except the last one!
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Waiting time until the kth event

fSk(s) = d
ds

[
1−

∑k−1
n=0

e−(θs)(θs)n

n!

]
= −

∑k−1
n=0

[
−θe−(λs)(θs)n

n! + e−(θs)nsx−1θn

n!

]
=
∑k−1

n=0

[
θe−(θs)(θs)n

n! − e−(θs)nsn−1θn

n!

]
=
∑k−1

n=0

[
θn+1e−(θs)sn

n!

]
−
∑k−1

n=1
θnsn−1e−θs

(n−1)!

Now, factor out the term e−θs and explicitly write down the sums:

fk(s) = e−θs


θ + θ2s + θ3s2

2! + . . . + θk−1sk−2

(k−2)! + θksk−1

(k−1)!

−θ − θ2s− θ3s2

2! − . . .−
θk−1sk−2

(k−2)!

We get a telescoping sum: all the terms cancel except the last one! Therefore, the above

equation reduces to

fk(s) =
e−θsθksk−1

(k − 1)!
, 0 < s <∞, which is a Gamma pdf.
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Waiting time until the kth event

We got that

fk(s) =
e−θsθksk−1

(k − 1)!
, 0 < s <∞, which is a Gamma pdf.

Therefore, the likelihood function for a series of independent observations of the waiting times

until the kth birth, s1, s2, . . . , sn is (if ε does not depend on θ)

L(θ) ∝ fSk(s1)fSk(s2) . . . fSk(sn).
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Waiting time until the kth event

We got that

fk(s) =
e−θsθksk−1

(k − 1)!
, 0 < s <∞, which is a Gamma pdf.

Therefore, the likelihood function for a series of independent observations of the waiting times

until the kth birth, s1, s2, . . . , sn is (if ε does not depend on θ)

L(θ) ∝ fSk(s1)fSk(s2) . . . fSk(sn).

Note: Using the general formulation of the gamma pdf we get that

P (S ≤ s) =
∫ s

0
θk

Γ(k)s
k−1e−θsds

= 1−
∑k−1

n=0
e−sθ(θs)

n!

=
∑∞

n=k
e−sθ(θs)

n! , which is the right tail of the initial Poisson model.

Thus, the right tail (i.e. from k to ∞) of our initial probabilistic model of the number of births

during a period of time s is in fact identical to the left tail of the resulting gamma model of the

waiting time until the kth birth occurs.
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The likelihood function and further inference questions

• A biologist might not necessarily be interested in estimating the parameters but rather, in

knowing which scenario best explains the data (i.e. Does p vary per sex, season, year,

according to rain,. . .)

• How can the likelihood function help us decide amongst a suite of models?

– Answer, case 1: pairwise model selection

– Answer, case 2: multiple models

• Example: Are the non-linearities introduced by the theta-Ricker model necessary to explain

a time series with demographic and environmental stochasticities?
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The likelihood function for the model with environmental
and demographic stochasticities:

Let λ ∼ Gamma(k, α) represent the environmental noise and let each individual have a Poisson

offspring distribution then we saw that the transition pdf was

P (Nt+1 = nt+1|Nt = nt) =
Γ(nt+1 + k)

Γ(k)nt+1!

(
α

ntpt + α

)k(
ntpt

ntpt + α

)nt+1

,

where

pt = exp
{
−b nθt

}
for theta-Ricker model.

Given a time series data set consisting of the (exact) counts n0, n1, . . . , nq, then the likelihood

function for the parameters θ = [k, α, b, θ]′is again the joint pmf of the population sizes

N1, . . . , Nq evaluated at the data at hand:

L(θ) =

q−1∏
t=0

P (Nt+1 = nt+1|Nt = nt).

If N0 is an observation from the stationary distribution of the process, then

L(θ) = P (N0 = n0)×
q−1∏
t=0

P (Nt+1 = nt+1|Nt = nt).
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The likelihood function and further inference questions

• A biologist might not necessarily be interested in estimating the parameters but rather, in

knowing which scenario best explains the data (i.e. Does p vary per sex, season, year,

according to rain,. . .)

• How can the likelihood function help us decide amongst a suite of models?

– Answer, case 1: pairwise model selection

– Answer, case 2: multiple models

• Example: Are the non-linearities introduced by the theta-Ricker model necessary to explain

a time series with demographic and environmental stochasticities?

H0 : θ = 1, and we let k, α, b vary freely

H1 : θ 6= 1. We let all the parameters vary freely.
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A generalization of the theta-Ricker modeling question:
Large sample Likelihood Ratio Tests

Consider the following setting, where the null (restricted) hypothesis is given by

H0 : θ = θ0 = [c, θ2, θ3, . . . , θr].

LH0(θ0) is maximized at θ̃0 = [c, θ̃2, θ̃3, . . . , θ̃r].

and the alternative (unrestricted) hypothesis is

H1 : θ = θ0 = [θ1, θ2, θ3, . . . , θr]

LH1(θ) is maximized at θ̂ = [θ̂1, θ̂2, θ̂3, . . . , θ̂r]
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A generalization of the theta-Ricker modeling question:
Large sample Likelihood Ratio Tests

Consider the following setting, where the null (restricted) hypothesis is given by

H0 : θ = θ0 = [c, θ2, θ3, . . . , θr].

LH0(θ0) is maximized at θ̃0 = [c, θ̃2, θ̃3, . . . , θ̃r].

and the alternative (unrestricted) hypothesis is

H1 : θ = θ0 = [θ1, θ2, θ3, . . . , θr]

LH1(θ) is maximized at θ̂ = [θ̂1, θ̂2, θ̂3, . . . , θ̂r]

Alternatively, H0 specifies θ as depending on q < r underlying parameters:

θ1 = h1(ξ1, ξ2, . . . , ξq)
...

θr = hr(ξ1, ξ2, . . . , ξq)
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Generalized Likelihood Ratio Test

Theorem (Samuel Wilks): under regularity conditions, if H0 is true, then the statistic

G2 = −2ln Λ = −2ln

[
LH0(θ̃0)

LH1(θ̂)

]
d→χ2

(s),

where s = number of restrictions = r − q = number of parameters estimated under H1−
number of parameters estimated under H0

• The parameters under the null can be made a function of q other parameters (q < r).

• Regularity conditions are the same as those of ML estimation (See Dennis & Taper 1994)!

• The alternative model is not restricted

• Decision rule: Reject H0 in favor of H1 if G2
obs ≥ χ2

(s)(α), where α = significance level.
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Generalized Likelihood Ratio Tests and Confidence
Intervals

A 100(1− α)% CI for θ1 is the set of all c’s for which H0 would not be rejected at a

significance level α.
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Generalized Likelihood Ratio Tests and Confidence
Intervals

A 100(1− α)% CI for θ1 is the set of all c’s for which H0 would not be rejected at a

significance level α. Reject H0 if G2
obs ≥ χ2

(1)(α)
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Generalized Likelihood Ratio Tests and Confidence
Intervals

A 100(1− α)% CI for θ1 is the set of all c’s for which H0 would not be rejected at a

significance level α. Reject H0 if G2
obs ≥ χ2

(1)(α),

⇒ −2ln

[
LH0

(θ̃0)

LH1
(θ̂)

]
≥ χ2

(1)(α)

⇒ −2
[
lnLH0(θ̃0)− lnLH1(θ̂)

]
≥ χ2

(1)(α)

⇒ lnLH1(θ̂)− lnLH0(θ̃0) ≥
χ2
(1)

(α)

2

⇒ lnLH1(θ̂)−
χ2
(1)

(α)

2 ≥ lnLH0(θ̃0)
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Generalized Likelihood Ratio Tests and Confidence
Intervals
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values of c

ln
 L
H
0(θ̂

0)

Remember that θ̃0 = [c, θ̃2, θ̃3, . . . , θ̃r︸ ︷︷ ︸
maximize r−1 params.

]

and that θ̂ = [θ̂1, θ̂2, θ̂3, . . . , θ̂r]︸ ︷︷ ︸
maximize r params.

.

Now,
χ2
(1)

(α)

2 = 3.843
2 = 1.9215 so rejectH0 if

lnLH1(θ̂)−
χ2
(1)

(α)

2 ≥ lnLH0(θ̃0)

⇒ lnLH1(θ̂)− 1.9215 ≥ lnLH0(θ̃0)
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Generalized Likelihood Ratio Tests and Confidence
Intervals
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]
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.

Now,
χ2
(1)

(α)

2 = 3.843
2 = 1.9215 so rejectH0 if

lnLH1(θ̂)−
χ2
(1)

(α)

2 ≥ lnLH0(θ̃0)

⇒ lnLH1(θ̂)− 1.9215 ≥ lnLH0(θ̃0)
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Generalized Likelihood Ratio Tests and Confidence
Intervals
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maximize r−1 params.

]

and that θ̂ = [θ̂1, θ̂2, θ̂3, . . . , θ̂r]︸ ︷︷ ︸
maximize r params.

.

Now,
χ2
(1)

(α)

2 = 3.843
2 = 1.9215 so rejectH0 if

lnLH1(θ̂)−
χ2
(1)

(α)

2 ≥ lnLH0(θ̃0)

⇒ lnLH1(θ̂)− 1.9215 ≥ lnLH0(θ̃0)
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The relative likelihood function

0.86 0.88 0.90 0.92 0.94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative likelihood: L(p) L(p̂)

values of p

R
L(
p)

=
L(
p)
L(
p̂)

p̂ = 0.906

MaximizingL(p) : set dL(p)
dp = 0, solve for p

Amounts to set 1
L(p)

dL(p)
dp = 0, solve for p.

That is,

d lnL(p)
dp = d

dp

[∑24
i=1 ln

(
ni−1
ni

)
pni(1− p)ni−1−ni

]
⇒ d lnL(p)

dp ∝
∑24
i=1 ni
p −

∑24
i=1 ni−1−ni

(1−p) = 0

⇒ p̂ =
∑24
i=1 ni∑24
i=1 ni−1

= 0.906
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Generalized Likelihood Ratio Tests and Confidence
Intervals
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θ̂1

Remember that θ̃0 = [c, θ̃2, θ̃3, . . . , θ̃r︸ ︷︷ ︸
maximize r−1 params.

]

and that θ̂ = [θ̂1, θ̂2, θ̂3, . . . , θ̂r]︸ ︷︷ ︸
maximize r params.

.

Now,
χ2
(1)

(α)

2 = 3.843
2 = 1.9215 so rejectH0 if

lnLH1(θ̂)− 1.9215 ≥ lnLH0(θ̃0)

Profile likelihood CI: the set of values

of c for which we fail to reject H0!
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Fisher’s information and asymptotic Wald’s C.I.
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Let X1, X2, . . . , Xn be a sample of size n, Xi iid or ind.

Likelihood: f (x; θ) = f (x1, x2, . . . , xn; θ) and if Xi discrete

f (x, x2, . . . , xn; θ) = P (X1 = x1, X2 = x2, . . . , Xn = xn).

Now define I(θ) = EX

([
∂
∂θ ln f (x; θ)

]2)
.

Under certain conditions I(θ) = −EX

([
∂2

∂θ2
ln f (x; θ)

]2
)
.
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Generalized Likelihood Ratio Tests and Confidence
Intervals
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Remember that θ̃0 = [c, θ̃2, θ̃3, . . . , θ̃r︸ ︷︷ ︸
maximize r−1 params.

]

and that θ̂ = [θ̂1, θ̂2, θ̂3, . . . , θ̂r]︸ ︷︷ ︸
maximize r params.

.

Now,
χ2
(1)

(α)

2 = 3.843
2 = 1.9215 so rejectH0 if

lnLH1(θ̂)− 1.9215 ≥ lnLH0(θ̃0)

Profile likelihood CI: the set of values

of c for which we fail to reject H0!
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Fisher’s information and asymptotic Wald’s C.I.

0.6 0.7 0.8 0.9 1.0

-6
0

-5
0

-4
0

-3
0

θ

ln
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(θ
)

Let X1, X2, . . . , Xn be a sample of size n, Xi iid or ind.

Likelihood: f (x; θ) = f (x1, x2, . . . , xn; θ) and if Xi discrete

f (x, x2, . . . , xn; θ) = P (X1 = x1, X2 = x2, . . . , Xn = xn).

Now define I(θ) = EX

([
∂
∂θ ln f (x; θ)

]2)
.

Under certain conditions I(θ) = −EX

([
∂2

∂θ2
ln f (x; θ)

]2
)
.

Theorem (Abraham Wald): The random variable θ̂
d→N (θ, [I(θ)]−1) as n→∞. It follows

that an approximate (1− α)100% C.I. for θ is given by θ̂ ± zα/2

√[
I(θ̂)

]−1

. As sample size

grows large, Wald’s C.I.’s and the profile likelihood C.I.’s are equivalent. Coverage properties!



120

Fisher’s Information: 2 or more parameters

θ =


θ1

θ1
...

θr

 x =


x1

x1
...

xn

 .
The likelihood is written as the joint pdf of X1, . . . , Xn evaluated at the observations

x1, . . . , xn and is denoted as L(θ) = f (x;θ). The ML estimates [θ̂1, θ̂1, . . . , θ̂r] are the values

of the parameters that jointly maximize L(θ), i.e. the roots of

∂lnL(θ)
∂θ1

= 0

∂lnL(θ)
∂θ2

= 0
...
∂lnL(θ)
∂θr

= 0.
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Fisher’s Information for 2 or more parameters

In the multivariate case, Fisher’s information is written as I(θ) = −E[H(θ)], where

H(θ) =



∂lnL(θ)

∂θ21

∂lnL(θ)
∂θ1∂θ2

. . . ∂lnL(θ)
∂θ1∂θr

∂lnL(θ)
∂θ2∂θ1

∂lnL(θ)

∂θ22
. . . ∂lnL(θ)

∂θ2∂θr
... ... . . . ...

∂lnL(θ)
∂θr∂θ1

∂lnL(θ)
∂θr∂θ2

. . . ∂lnL(θ)
∂θ2r

 .

The Hessian matrix evaluated at the ML estimates and multiplied by −1 is called the

“Observed information matrix”,

J(θ̂) =

{
−∂

2lnL(θ̂)

∂θi∂θj

}
i, j = 1, 2, . . . , r.

Either
[
I(θ̂)

]−1

or
[
J(θ̂)

]−1

are statistically consistent estimates of the variance of θ̂
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Wald’s theorem and regularity conditions

Under regularity conditions on L(θ), the random variable θ̂
d→N (θ, [I(θ)]−1) and an

approximate (1− α)100% C.I. for θi is given by θ̂i ± zα/2

√{[
I(θ̂)

]−1
}
i,i

.

Regularity conditions roughly say that:

1. θ cannot be on the boundary of the parameter space.

2. The range of the Xi’s cannot depend on θ

3. When multi-modal likelihoods appear, all bets are off!! (And this happens very often.)
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Model Selection: Akaike’s Information Criterion

Let f (x) and g(x) be two joint pdf’s (pmf’s) -the likelihood- modeling in two different ways a

biological phenomenon. Then the ratio f (x)/g(x) gives us an idea of how much more likely is

one model relative to the other one.
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Model Selection: Akaike’s Information Criterion

Let f (x) and g(x) be two joint pdf’s (pmf’s) -the likelihood- modeling in two different ways a

biological phenomenon. Then the ratio f (x)/g(x) gives us an idea of how much more likely is

one model relative to the other one. Now, the Kullback-Leibler Divergence

K(f (x), g(x)) = EX

[
ln

(
f (x)

g(x)

)]
tells us, on average, how much more likely is g(x) relative to f (x). Suppose f (x) is an

(unknown) stochastic mechanism that generates the data, the truth.
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Model Selection: Akaike’s Information Criterion

Let f (x) and g(x) be two joint pdf’s (pmf’s) -the likelihood- modeling in two different ways a

biological phenomenon. Then the ratio f (x)/g(x) gives us an idea of how much more likely is

one model relative to the other one. Now, the Kullback-Leibler Divergence

K(f (x), g(x)) = EX

[
ln

(
f (x)

g(x)

)]
tells us, on average, how much more likely is g(x) relative to f (x). Suppose f (x) is an

(unknown) stochastic mechanism that generates the data, the truth. Now suppose g(x) is the

model that we are trying to use to describe the data. Then, the above expectation expresses

how far away from the truth is the model.
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Model Selection: Akaike’s Information Criterion

Let f (x) and g(x) be two joint pdf’s (pmf’s) -the likelihood- modeling in two different ways a

biological phenomenon. Then the ratio f (x)/g(x) gives us an idea of how much more likely is

one model relative to the other one. Now, the Kullback-Leibler Divergence

K(f (x), g(x)) = EX

[
ln

(
f (x)

g(x)

)]
tells us, on average, how much more likely is g(x) relative to f (x). Suppose f (x) is an

(unknown) stochastic mechanism that generates the data, the truth. Now suppose g(x) is the

model that we are trying to use to describe the data. Then, the above expectation expresses

how far away from the truth is the model. Some properties of the K-L distance are

1. K(f (x), g(x)) = 0⇔ f (x) = g(x)

2. K(f (x), g(x)) ≥ 0,

3. Value of θ that minimizes K(f (x), g(x, θ)) is the MLE of θ, θ̂.
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K-L divergence as a model comparison tool

The difference in K-L divergence between each of two different models and the truth,i.e.,

K(f (x), g1(x; θ1))−K(f (x), g2(x; θ2)).

can be used to compare one model against the other, but don’t know f (x)!
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K-L divergence as a model comparison tool

The difference in K-L divergence between each of two different models and the truth,i.e.,

K(f (x), g1(x; θ1))−K(f (x), g2(x; θ2)).

can be used to compare one model against the other, but don’t know f (x)! However, Akaike

showed that a statistically consistent estimate of

K(f (x), gi(x; θi)) is given by AICi = −2lnL(θ̂i) + 2× pi,

where pi = # of model parameters estimated with the data.
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K-L divergence as a model comparison tool

The difference in K-L divergence between each of two different models and the truth,i.e.,

K(f (x), g1(x; θ1))−K(f (x), g2(x; θ2)).

can be used to compare one model against the other, but don’t know f (x)! However, Akaike

showed that a statistically consistent estimate of

K(f (x), gi(x; θi)) is given by AICi = −2lnL(θ̂i) + 2× pi,

where pi = # of model parameters estimated with the data.

• If you have a series of models, the decision rule is to pick the model for which the AIC is

the smallest.
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K-L divergence as a model comparison tool

The difference in K-L divergence between each of two different models and the truth,i.e.,

K(f (x), g1(x; θ1))−K(f (x), g2(x; θ2)).

can be used to compare one model against the other, but don’t know f (x)! However, Akaike

showed that a statistically consistent estimate of

K(f (x), gi(x; θi)) is given by AICi = −2lnL(θ̂i) + 2× pi,

where pi = # of model parameters estimated with the data.

• If you have a series of models, the decision rule is to pick the model for which the AIC is

the smallest.

• AIC is a frequentist concept: over hypothetical repeated sampling, it is a consistent

estimate of the expected, relative K-L distance between the generating model and the

proposed model.
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K-L divergence as a model comparison tool

The difference in K-L divergence between each of two different models and the truth,i.e.,

K(f (x), g1(x; θ1))−K(f (x), g2(x; θ2)).

can be used to compare one model against the other, but don’t know f (x)! However, Akaike

showed that a statistically consistent estimate of

K(f (x), gi(x; θi)) is given by AICi = −2lnL(θ̂i) + 2× pi,

where pi = # of model parameters estimated with the data.

• If you have a series of models, the decision rule is to pick the model for which the AIC is

the smallest.

• AIC is a frequentist concept: over hypothetical repeated sampling, it is a consistent

estimate of the expected, relative K-L distance between the generating model and the

proposed model.

• Other information criteria and future research questions with this topic will be covered in

next talk.
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Observation Error (Real life happens. . .)
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General model accounting for sampling error:
State-space models

• Let Xt be a d.t. Markov process. Let the conditional density function of Xt given

Xt−1 = xt−1 be g(xt|xt−1, θ).
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General model accounting for sampling error:
State-space models

• Let Xt be a d.t. Markov process. Let the conditional density function of Xt given

Xt−1 = xt−1 be g(xt|xt−1, θ).

• Conditional on Xt, the observations process Yt is another random variable with pdf given

by f (yt|xt, φ):
(state equation): Xt|Xt−1 ∼ g(xt|xt−1, θ),

(observation equation): Yt|Xt ∼ f (yt|xt, φ).
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General model accounting for sampling error:
State-space models

• Let Xt be a d.t. Markov process. Let the conditional density function of Xt given

Xt−1 = xt−1 be g(xt|xt−1, θ).

• Conditional on Xt, the observations process Yt is another random variable with pdf given

by f (yt|xt, φ):
(state equation): Xt|Xt−1 ∼ g(xt|xt−1, θ),

(observation equation): Yt|Xt ∼ f (yt|xt, φ).

• If both g and f are linear Gaussian conditional distributions then the resulting model is

called a linear state-space model (LSSM), or dynamic linear model (DLM).
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General model accounting for sampling error:
State-space models

• Let Xt be a d.t. Markov process. Let the conditional density function of Xt given

Xt−1 = xt−1 be g(xt|xt−1, θ).

• Conditional on Xt, the observations process Yt is another random variable with pdf given

by f (yt|xt, φ):
(state equation): Xt|Xt−1 ∼ g(xt|xt−1, θ),

(observation equation): Yt|Xt ∼ f (.|xt, φ).

• If both g and f are linear Gaussian conditional distributions then the resulting model is

called a linear state-space model (LSSM), or dynamic linear model (DLM).

• In general L(θ, φ) =
∫
f (y|X, φ)g(x; θ)dX.

• Need computer intensive methods to calc. the likelihood for non-linear, non-gaussian

models.
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Observation error & density-independence
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Observation error and density-dependence

The stochastic Gompertz model

Nt = Nt−1e
[(a+bln(Nt−1)+σEt]

Let xt = ln(nt) and take c = b + 1, then we have a first-order autoregressive process

(Reddingius, 1971, Dennis and Taper 1994):

Xt = Xt−1 + a + bXt−1 + Et

= a + cXt−1 + Et

Density independence is expressed through b = 0 or c = 1. For |c| < 1 the stationary

distribution exists and:

E[X∞] = lim
t→∞

E[Xt] =
a

1− c

V ar[X∞] = lim
t→∞

V ar[Xt] =
σ2

1− c2
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Stochastic Gompertz with observation error:

• Let Yt be the estimated logarithmic population abundance, such that:

Yt = Xt + Ft

= a + cXt−1 + Et + Ft

= a + c(Yt−1 − Ft−1) + Et + Ft,

where Ft ∼ N(0, τ 2).

• The Markov property is lost: it is an ARMA model (Autorregresive Moving Average

process).

• There is extra info. in the autocorrelation structure about σ2 and τ 2.

• The ML parameter estimates are obtained via the Kalman filter (lots of conditioning) or

using MVN:
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The Multivariate Normal model:

No observation error: we have a series of recorded observations

x0, x1, . . . xq.

Assuming X0 arises from the stationary distribution, the joint pdf of X0, X1, . . . Xq = X has

the following distribution:

X ∼MVN(µ,Σ)

where

Σ =
σ2

1− c2


1 c c2 . . . cq

c 1 c . . . cq−1

c2 c 1 . . . cq−2

... ... ... . . . ...

cq cq−1 cq−2 . . . c


and

µ =
a

1− c
j,

j being a (q + 1)× 1 vector of ones.
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The Multivariate Normal model:

With observation error: given the observations,y0, y1, . . . yq, the joint pdf of Y0, Y1, . . . Yq is

multivariate normal: writing Y = X + F, we get

Y ∼MVN(µ,V)

where µ = a
1−cj, j being a (q + 1)× 1 vector of ones, and V = Σ + τ 2I. The variance

covariance matrix of the process is:

V =



σ2

1−c2 + τ 2 cσ2

1−c2
c2σ2

1−c2 . . . cqσ2

1−c2
cσ2

1−c2
σ2

1−c2 + τ 2 cσ2

1−c2 . . . cq−1σ2

1−c2
c2σ2

1−c2
cσ2

1−c2
σ2

1−c2 + τ 2 . . . cq−2σ2

1−c2... ... ... . . . ...
cqσ2

1−c2
cq−1σ2

1−c2
cq−2σ2

1−c2 . . . σ2

1−c2 + τ 2

 .

Therefore, the log-likelihood needed for parameter estimation is:

lnL(a, c, σ2, τ 2) = −q + 1

2
ln(2π)− 1

2
ln|V| − 1

2
(y − µ)′V−1(y − µ)

(First differences log-likelihood -REML- can also be obtained and behave nicely)
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Log-profile likelihoods
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Estimated proportion of observation error: ≈ 70 %

RESULTS

Example analyses using GSS model

The illustrative data set (Fig. 1) charts annual
American Redstart (Setophaga ruticilla) counts at a
survey location in the North American Breeding Bird
Survey (BBS; Robbins et al. 1986, Peterjohn 1994). The
data in the BBS are problematic in that the observations
contain heterogeneous observation error. Survey routes
are traversed by different observers with different
training, abilities, hearing, eyesight, under different
observing conditions. Nevertheless, the route locations
are numerous and spatially extensive, and many of the
time series exceed 30 yr in length. While the short-
comings of the BBS methodology are well documented,
investigators remain confident that meaningful ‘‘signals’’
might be extracted which could prove valuable for
monitoring and assessing trends in North American bird
populations. Early statistical attempts to estimate trend
in BBS data with linear regression (e.g., Bohning-Gaese
et al. 1993) have been superceded by contemporary
‘‘overdispersed’’ models of count data that accommo-
date observer effects (Link and Sauer 1997, 1998).
We fitted the GSS model to the data with ML and

REML estimation (Table 1, Fig. 1). We also calculated
approximate 95% confidence intervals for the parame-
ters under ML and REML estimation using parametric
bootstrapping (Table 1). To obtain the bootstrap
confidence intervals, we simulated 2000 data sets from
the ML- and REML-estimated GSS models and
recalculated estimates for each simulated data set. Our
algorithm rejected solutions with r2 or s2 near zero and
instead repeated and widened the search for an interior

local maximum using different initial values. The 2.5th
and 97.5th empirical percentiles of the 2000 ML and
REML values were taken as the confidence interval
boundaries (Dennis and Taper 1994, Manly 1997). Thus,
the confidence intervals reflect the sampling variability
of the local interior solution and were not spread over
separated intervals of parameter space. The ML and
REML estimation methods yielded somewhat different
values for the parameters. The ML estimate of a was
considerably larger than the REML estimate, while the
REML estimate of c was larger than the ML; both
REML estimates were outside the ML-based confidence
intervals (Table 1). The REML confidence intervals by
contrast contained the ML estimates. The computer
simulations presented below suggest that ML and
REML estimates both have considerable sampling
variability.
The fitted GSS model yielded estimates of the

properties of the stationary distribution of population
abundance (Table 2). The estimated stationary distribu-
tion of the log-scale observations under REML has
larger variance than under ML, although the estimated
means are similar. Translated to the original scale, the
lognormal stationary distribution for the observed
population abundance has 97.5th percentile (g0.975)
estimated to be almost twice as large under REML as
under ML, but the 2.5th percentile (g0.025) estimates are
very close (Table 2). The ML estimates of the 2.5th and
97.5th percentiles for the lognormal stationary distribu-
tion of the underlying population process, Nt, are
estimated to be (2.45, 18.28). Under the ergodic theorem
for stochastic processes, the population abundance

FIG. 1. Observed population counts of American Redstart, 1966–1995, from record number 0214332808636 of the North
American Breeding Bird Survey (circles and solid line; see Peterjohn [1994] for description of data and sampling methods) and
estimated population abundances from the fitted Gompertz state-space model (triangles and dotted line; see Table 1 legend).

BRIAN DENNIS ET AL.332 Ecological Monographs
Vol. 76, No. 3

Dennis, B., Ponciano, J.M., Lele, S., Taper, M.L., Staples, D.F. 2006. Estimating

density-dependence, process noise and observation error. Ecol. Monogr. 76: 323-341
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Replicated Sampling

 

Figure 1.  Three simulated time series data sets for the Gompertz state space model with 

replicated sampling.  Solid lines:  underlying true population abundances.  Circles:  

sampled/estimated population abundances, with two sampling replications each time 

period.  Parameter values used were:  (upper panel) a = 0.4, c = 0.8, 2! = 0.1, 2! = 0.2, 

(middle panel) a = 0.4, c = 0.8, 2! = 0.1, 2! = 0.05, (lower panel) a = 0.4, c = 0.8, 2! = 

0.1, 2! = 0.01. 
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Replicated Sampling for the GSS model

• Let Yt be the estimated logarithmic population abundance, such that:

Yt = Xt + Ft

= a + cXt−1 + Et + Ft

= a + c(Yt−1 − Ft−1) + Et + Ft,

• If at time step t, pt replicates are taken yielding observations Yt = [Y1t, Y2t, Y3t, . . . Ypt]
′,

then we write:

Yt = jtXt + Ft,

where jt is a pt× 1 vector of ones, Ft ∼MVN(0, τ 2It) and It is a pt× pt identity matrix.

• The likelihood of the observations from t = 0 to t = q is the joint pdf of Yt given

Yt−1 = yt−1,Yt−2 = yt−2, . . . ,Y0 = y0.
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Replicated Sampling for the GSS model

• The likelihood is multivariate normal and its mean and variance changes with time. The

Kalman recursions can also be used here.

• Let Jt be a pt × pt matrix of ones and, let jt be a pt × 1 vector of ones and It be the

pt × pt identity matrix.

• Using the stationary distribution for X0 ∼ N(µ0, ψ
2), it is found that E[Y0] = j0µ0 = m0

and that V ar[Y0] = ψ2J0 + τ 2I0
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Replicated Sampling for the GSS model

• The Kalman recursions are:

µt = a + c
[
µt−1 + j′t−1ψ

2
t−1V

−1
t−1(yt−1 −mt−1)

]
,

ψ2
t = c2ψ2

t−1

[
1− ψ2

t−1j
′
t−1V

−1
t−1jt−1

]
+ σ2,

mt = jtµt,

Vt = Jtψ
2
t−1 + τ 2It.

• And the full likelihood function (assuming we start at the stationary distribution) is:

L(a, c, σ2, τ 2) = L(y0)L(y1|y0)L(y2|y1,y0) . . . (yq|,yq−1, ...y0)

= (2π)−p/2(|V0||V1| . . . |Vq|)−1/2 exp

[
−1

2

q∑
t=0

(yt −mt)
′V−1

t (yt −mt)

]
,

where p = p0 + p1 + . . . + pq.
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Log-profile likelihoods
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MCMC and computer intensive methods

Next time!


