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Examples: Continuous time SIS model and two SDE
models
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Example: a continuous time stochastic SIS model

SIS ODE model:
dI

dt
=
β

N
S(I + ε)− gI

S = N − I = # of susceptibles, N = total pop. size (cst.)

β is the contact rate,

ε =import of infection from an external source (ε = 0 if pop. is isolated)

g = recovery rate

Analogous to Levins 1969 metapopulation model (Hosts are empty (S) or occupied(I)).
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Example: a continuous time stochastic SIS model

SIS ODE model:
dI

dt
=
β

N
S(I + ε)− gI

S = N − I = # of susceptibles, N = total pop. size (cst.)

β is the contact rate,

ε =import of infection from an external source (ε = 0 if pop. is isolated)

g = recovery rate

Analogous to Levins 1969 metapopulation model (Hosts are empty (S) or occupied(I)).

Stochastic version: the states are I = 0, 1, . . . , N. At t = 0, I(0) = k. So P (I(0) = k) = 1

and

P (I(t) = i) = pi(t) = P (I(t) = i|X(0) = k).
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Kolmogorov-Forward equation

If the process is in state i at time t, then at time t + ∆t it will be either at state i + 1, i− 1 or

i (∆t chosen so that at most 1 event occur). Therefore,

pi(t + ∆t) = pi−1(t)(∆t)
[
β
NS(t)(I(t) + ε)

]
+ pi+1(t)(∆t)gI(t)

+pi(t)
[
1− (∆t) βNS(t)(I(t) + ε) + gI(t)

]
.

Hence
pi(t+∆t)−pi(t)

∆t = pi−1(t)
[
β
NS(t)(I(t) + ε)

]
+ pi+1(t)(∆t)gI(t)

−pi(t)
[
β
NS(t)(I(t) + ε) + gI(t)

]
,

and since S = N − I ∀ t, and letting ∆t→ 0 we get

dpi(t)

dt
= pi−1(t)

β

N
(N − i + 1)(i− 1 + ε) + pi+1(t)g(i + 1)− pi(t)

[
β

N
(N − i)(i + ε) + gi

]
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The transition rates matrix Q

In vector notation,

dpi(t)

dt
= pi−1(t)

β

N
(N − i + 1)(i− 1 + ε) + pi+1(t)g(i + 1)− pi(t)

[
β

N
(N − i)(i + ε) + gi

]
becomes dp

dt = pQ, where dim(p) = 1× (N + 1) and dim(Q) = (N + 1)× (N + 1) :
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The transition rates matrix Q

In vector notation,

dpi(t)

dt
= pi−1(t)

β

N
(N − i + 1)(i− 1 + ε) + pi+1(t)g(i + 1)− pi(t)

[
β

N
(N − i)(i + ε) + gi

]
becomes dp

dt = pQ, where dim(p) = 1× (N + 1) and dim(Q) = (N + 1)× (N + 1) :

Q =



−βε βε 0 0 . . .

g −
[
β
N (N − 1)(1 + ε) + g

]
β
N (N − 1)(1 + ε) 0 . . .

0 2g −
[
β
N (N − 2)(2 + ε) + 2g

]
β
N (N − 2)(2 + ε) . . .

0 0 3g −
[
β
N (N − 3)(3 + ε) + 3g

]
. . .

0 0 0 4g . . .
...

...
...

...
. . .


.
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The transition rates matrix Q

In vector notation,

dpi(t)

dt
= pi−1(t)

β

N
(N − i + 1)(i− 1 + ε) + pi+1(t)g(i + 1)− pi(t)

[
β

N
(N − i)(i + ε) + gi

]
becomes dp

dt = pQ, where dim(p) = 1× (N + 1) and dim(Q) = (N + 1)× (N + 1) :

Q =



−βε βε 0 0 . . .

g −
[
β
N (N − 1)(1 + ε) + g

]
β
N (N − 1)(1 + ε) 0 . . .

0 2g −
[
β
N (N − 2)(2 + ε) + 2g

]
β
N (N − 2)(2 + ε) . . .

0 0 3g −
[
β
N (N − 3)(3 + ε) + 3g

]
. . .

0 0 0 4g . . .
...

...
...

...
. . .


.

Solution to the system of ODEs: if p(0) = p0, then pt = p0 exp{Qt}
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Observing a realization of the process

• Observations at times t1 < t2 < . . . < tq−1 < tq. Let τi = ti − ti−1 as before.

• States: i1, i2, . . . , iq−1, iq
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The likelihood function

L(θ) = P (I(t1) = i1, I(t2) = i2, . . . , I(tq−1) = iq−1, I(tq) = iq)
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The likelihood function

L(θ) = P (I(t1) = i1, I(t2) = i2, . . . , I(tq−1) = iq−1, I(tq) = iq)

= P (I(t1) = i1)× P (I(t2) = i2|I(t1) = i1)× P (I(tq) = iq|I(tq−1) = iq−1)
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The likelihood function

L(θ) = P (I(t1) = i1, I(t2) = i2, . . . , I(tq−1) = iq−1, I(tq) = iq)

= P (I(t1) = i1)× P (I(t2) = i2|I(t1) = i1)× P (I(tq) = iq|I(tq−1) = iq−1)

= {pt1}i1 × {exp((t2 − t1)Q)}i1,i2 × {exp((t3 − t2)Q)}i2,i3 × . . .
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The likelihood function

L(θ) = P (I(t1) = i1, I(t2) = i2, . . . , I(tq−1) = iq−1, I(tq) = iq)

= P (I(t1) = i1)× P (I(t2) = i2|I(t1) = i1)× P (I(tq) = iq|I(tq−1) = iq−1)

= {pt1}i1 × {exp((t2 − t1)Q)}i1,i2 × {exp((t3 − t2)Q)}i2,i3 × . . .

= {pt1}i1 ×
∏q

k=2{exp(τkQ)}ik−1,ik
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The likelihood function

L(θ) = P (I(t1) = i1, I(t2) = i2, . . . , I(tq−1) = iq−1, I(tq) = iq)

= P (I(t1) = i1)× P (I(t2) = i2|I(t1) = i1)× P (I(tq) = iq|I(tq−1) = iq−1)

= {pt1}i1 × {exp((t2 − t1)Q)}i1,i2 × {exp((t3 − t2)Q)}i2,i3 × . . .

= {pt1}i1 ×
∏q

k=2{exp(τkQ)}ik−1,ik

= {pt1}i1 ×
∏q

k=2{Iik−1 × exp(τkQ)}ik, where

Ij is a vector that has zeros everywhere, except in the jth position where it has a 1.
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The likelihood function

L(θ) = P (I(t1) = i1, I(t2) = i2, . . . , I(tq−1) = iq−1, I(tq) = iq)

= P (I(t1) = i1)× P (I(t2) = i2|I(t1) = i1)× P (I(tq) = iq|I(tq−1) = iq−1)

= {pt1}i1 × {exp((t2 − t1)Q)}i1,i2 × {exp((t3 − t2)Q)}i2,i3 × . . .

= {pt1}i1 ×
∏q

k=2{exp((tk − tk−1)Q)}ik−1,ik

= {pt1}i1 ×
∏q

k=2{Iik−1 × exp(τkQ)}ik, where

Ij is a vector that has zeros everywhere, except in the jth position where it has a 1.

Notes:Computing exp(τQ) can be done using a matrix exponentiation algorithm (only once

per each iteration of the maximization routine if all τk’s are equal). However, can greatly reduce

computations by calculating Ij exp(τQ) (a vector) instead of exp(τQ) (a matrix). These are

the so-called Krylov space methods. (Citation: On 19 dubious ways. . .)
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Matrix exponentiation

A matrix exponentiation is achieved using a T.S. expansion:

exp(τQ) = I + τQ +
τ 2

2!
Q2 +

τ 3

3!
Q3 + . . .
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Matrix exponentiation

A matrix exponentiation is achieved using a T.S. expansion:

exp(τQ) = I + τQ +
τ 2

2!
Q2 +

τ 3

3!
Q3 + . . .

Hence

Ij exp(τQ) = IjI + IjτQ + Ij
τ 2

2!
Q2 + Ij

τ 3

3!
Q3 + . . .
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Matrix exponentiation

A matrix exponentiation is achieved using a T.S. expansion:

exp(τQ) = I + τQ +
τ 2

2!
Q2 +

τ 3

3!
Q3 + . . .

Hence

Ij exp(τQ) = IjI + IjτQ + Ij
τ 2

2!
Q2 + Ij

τ 3

3!
Q3 + . . .

• However this is definitely NOT the way to compute it because of accumulation of numerical

round-off errors!
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Matrix exponentiation

A matrix exponentiation is achieved using a T.S. expansion:

exp(τQ) = I + τQ +
τ 2

2!
Q2 +

τ 3

3!
Q3 + . . .

Hence

Ij exp(τQ) = IjI + IjτQ + Ij
τ 2

2!
Q2 + Ij

τ 3

3!
Q3 + . . .

• However this is definitely NOT the way to compute it because of accumulation of numerical

round-off errors!

• A program to simulate and estimate parameters for this model using R will be reviewed in

the computer session in the afternoon.

• About simulation: with certain computer intensive methods for parameter estimation, all

we need is to simulate realizations from the process conditioned on the ending point. To do

that, use Hobolth and Stone (2009), Annals of Applied Statistics).
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Matrix exponentiation

A matrix exponentiation is achieved using a T.S. expansion:

exp(τQ) = I + τQ +
τ 2

2!
Q2 +

τ 3

3!
Q3 + . . .

Hence

Ij exp(τQ) = IjI + IjτQ + Ij
τ 2

2!
Q2 + Ij

τ 3

3!
Q3 + . . .

• However this is definitely NOT the way to compute it because of accumulation of numerical

round-off errors!

• A program to simulate and estimate parameters for this model using R will be reviewed in

the computer session in the afternoon.

• About simulation: with certain computer intensive methods for parameter estimation, all

we need is to simulate realizations from the process conditioned on the ending point. To do

that, use Hobolth and Stone (2009), Annals of Applied Statistics).

• Sampling error?
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SDE’s I: a heuristic introduction using the Wright-Fisher
model

• Let X(k) = be the number of A1 individuals in generation k, for a (constant) population

size N : XN(k)

• The states are S = 0, 1, . . . , N

• 0 and N can be absorbing states, depending on the biological scenario (i.e. no mutation,

no selection)

• The number of A1’s for next generation follows a Binomial law (sampling with

replacement):

pi,j = P (X(k + 1) = j|X(k) = i) =

(
N

j

)
pji (1− pi)

N−j

• No mutation and no selection: pi = i
N

• Two-way mutation: pi = i
N (1− µ12) +

(
1− i

N

)
µ21

• With selection and without mutation: pi = (1+s)i
(1+s)i+(N−i)
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Approximating the discrete process with a continuous
time, continuous state MC

Recall that a diffusion process Xt satisfies:

1. limh→0+
1
hE[Xt+h −Xt|Xt = x] = µ(x)

drift parameter

2. limh→0+
1
hE[(Xt+h −Xt)

2|Xt = x] = σ2(x)

diffusion parameter

3. limh→0+
1
hE[(Xt+h −Xt)

4|Xt = x] = 0

needed for continuity of trajectories

Brownian Motion satisfies:

1. continuous trajectories

2. independent increments: Bt1 −Bs1 indep. of Bt2 −Bs2, 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2.

3. Normal increments: Bt −Bs ∼ N(0, t− s), s < t

4. Drift: µ = 0. Diffusion: σ2(x) = 1.
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Why ‘drift’ and ‘diffusion’ parameters?

lim
h→0+

1

h
E[Xt+h −Xt|Xt = x] = µ(x) then

E[Xt+h −Xt|Xt = x] ∼ µ(x)h (h small)

That is, when the process is in x, it changes an amount of µ(x)h in the next h units of time.

V ar(Xt+h −Xt|Xt = x)

= E[(Xt+h −Xt)
2|Xt = x]− (E[Xt+h −Xt|Xt = x])2

≈ σ2(x)h− µ(x)2h2 ≈ σ2(x)h

where σ2(x) is the infinitesimal variance of the diffusion. It tells us how much does the process

tends to move when at x.
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Construction of diffusions

If Bt denotes B.M., then Xt = aBt + bt is a diffusion process such that:

1. limh→0+
1
hE[Xt+h −Xt|Xt = x] = µ(x) = b

is the drift parameter

2. limh→0+
1
hE[(Xt+h −Xt)

2|Xt = x] = σ2(x) = a2

is the diffusion parameter

3. satisfies the condition of continuity.

Differential notation: dXt = adBt + bdt. In general:

dXt = µ(Xt)dt +
√
σ2(Xt)dBt,

Xt −X0 =

∫ t

0

µ(Xs)ds +

∫ t

0

σ(Xs)dBs.
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Construction of diffusions

Approximating a family of Markov Chains in discrete time:

XN(k), k = 0, 1, 2, . . .

Define: Y N
t ≡ 1

a(N)X
N([Nt]) . . . as the scaled process.

Idea: accelerate time by a factor N and scale space by a factor 1
a(N).

With the adequate scaling, limt→∞ Y
N
t = Yt, a limiting diffusion.

With the proper scaling, all of these processes look the same when N is large. Hence, a single

limiting diffusion process approximates all the scaled Markov chains. It’s like the CLT! For the

W-F model, the scaling is i/a(N) = i/N , the fraction of A1’s is a natural scaling
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Scaling W-F to a diffusion
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limt→∞ Y Nt = Yt

When does the approximation work? Let h = 1/N . If, as N →∞ and i/a(N)→ x we have

that:

1. 1
1/NE[Y N

t+ 1
N
− Y N

t |Y N
t = i

a(N)]→ µ(x),

2. 1
1/NE[(Y N

t+ 1
N
− Y N

t )2|Y N
t = i

a(N)]→ σ2(x),

3. 1
1/NE[(Y N

t+ 1
N
− Y N

t )4|Y N
t = i

a(N)]→ 0.

For the W-F model using the scaling i/a(N) = i/N :

• drift µ(x) = 0 (neutral case)

• diffusion σ2(x) = x(1− x). This comes from the “binomial sampling noise” due to finite

population size.

A little warning: the diffusion term is called “genetic drift” in population genetics
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Drift calculation for the neutral WF diffusion

Knowing that (X([Nt] + 1)|X([Nt]) = i) ∼ Bin(N, pi = i/N) we get

E
[
Y N
t+ 1

N
− Y N

t |Y N
t = i

N

]
= E

[
X([N(t+ 1

N )])

N − X([Nt])
N |X([Nt])

N = i
N

]

= 1
NE[X([Nt] + 1)− i|X([Nt]) = i]

= 1
N (Npi − i) = 1

N (N i
N − i) = 0, ∀N.

So 1
1/NE

[
Y N
t+ 1

N
− Y N

t |Y N
t = i

N

]
= 0 and hence µ(x) = 0.
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Other scenarios

With mutation probabilities u12 = θ12
N and u21 = θ21

N we get

pi =
i

N
(1− u12 + (1− i

N
)u21,

and the diffusion approximation has

• µ(x) = −θ12x + θ21(1− x) Boundary no longer absorbing

• σ2 = x(1− x)

With fitness advantage s = σ
N and no mutation,

pi =
(1 + s)i

(1 + s)i + (N − i)
and

• µ(x) = σx(1− x)

• σ2 = x(1− x)
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A hierarchical model using Wright-Fisher

Y|X ∼ Binom (M = 50,X)

X ∼ g(x; θ),

where

• g(x|θ) is given by the transition pdf of a Wright-Fisher diffusion (which lives between [0, 1]).

• Data example: Antibiotic resistant, antibiotic sensitive bacteria, sample size at each time

step: M = 50.

• Likelihood:

L(θ, φ) =

∫
f (y|X, φ)g(x; θ)dX.
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A hierarchical model using Wright-Fisher

Y|X ∼ Binom (M = 50,X)

X ∼ g(x; θ),

where

• g(x; θ) is given by the product of the transition pdfs for the Wright-Fisher diffusion,

evaluated at the observed time steps (Remember that the chain lives between [0, 1]).

• Data example: Antibiotic resistant, antibiotic sensitive bacteria, sample size at each time

step: M = 50.

• Likelihood:

L(θ, φ) =

∫
f (y|X, φ)g(x; θ)dX.

• Likelihood uses:

– The transition pdf of the diffusion process or

– the stationary density, if it exists (and data at stationarity)
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L(θ, φ) =
∫
f (y|X, φ)g(x; θ)dX.

g(x; θ) is the product of the transition pdfs, just as in the continuous MC case.
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L(θ, φ) =
∫
f (y|X, φ)g(x; θ)dX.

g(x; θ) is the product of the transition pdfs, just as in the continuous MC case.

The transition pdf pt(x, x
′; θ) satisfies the Kolmogorov-Forward equation

∂

∂t
pt(x, x

′; θ) = A?pt(x, x
′; θ), where A? acts on x′ and
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L(θ, φ) =
∫
f (y|X, φ)g(x; θ)dX.

g(x; θ) is the product of the transition pdfs, just as in the continuous MC case.

The transition pdf pt(x, x
′; θ) satisfies the Kolmogorov-Forward equation

∂

∂t
pt(x, x

′; θ) = A?pt(x, x
′; θ), where A? acts on x′ and

A?pt(x, x
′; θ) = − ∂

∂x′
[µ(x′)pt(x, x

′; θ)] +
1

2

∂2

∂x′2
[σ2(x′)pt(x, x

′; θ)].
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L(θ, φ) =
∫
f (y|X, φ)g(x; θ)dX.

g(x; θ) is the product of the transition pdfs, just as in the continuous MC case.

The transition pdf pt(x, x
′; θ) satisfies the Kolmogorov-Forward equation

∂

∂t
pt(x, x

′; θ) = A?pt(x, x
′; θ), where A? acts on x′ and

A?pt(x, x
′; θ) = − ∂

∂x′
[µ(x′)pt(x, x

′; θ)] +
1

2

∂2

∂x′2
[σ2(x′)pt(x, x

′; θ)].

Under certain conditions, limt→∞ pt(x, z) = π(z) exists. If this limit exists and π(z) is a

probability density, i.e.

π(z) ≥ 0,

∫ ∞
−∞

π(z)dz = 1, then this is the stationary density and
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L(θ, φ) =
∫
f (y|X, φ)g(x; θ)dX.

g(x; θ) is the product of the transition pdfs, just as in the continuous MC case.

The transition pdf pt(x, x
′; θ) satisfies the Kolmogorov-Forward equation

∂

∂t
pt(x, x

′; θ) = A?pt(x, x
′; θ), where A? acts on x′ and

A?pt(x, x
′; θ) = − ∂

∂x′
[µ(x′)pt(x, x

′; θ)] +
1

2

∂2

∂x′2
[σ2(x′)pt(x, x

′; θ)].

Under certain conditions, limt→∞ pt(x, z) = π(z) exists. If this limit exists and π(z) is a

probability density, i.e.

π(z) ≥ 0,

∫ ∞
−∞

π(z)dz = 1, then this is the stationary density and

limt→∞ P
x(Xt ∈ E) =

∫
E π(z)dz and

limt→∞E
xf (Xt) =

∫∞
−∞ f (z)π(z)dz
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L(θ, φ) =
∫
f (y|X, φ)g(x; θ)dX.

g(x; θ) is the product of the transition pdfs, just as in the continuous MC case.

The transition pdf pt(x, x
′; θ) satisfies the Kolmogorov-Forward equation

∂

∂t
pt(x, x

′; θ) = A?pt(x, x
′; θ), where A? acts on x′ and

A?pt(x, x
′; θ) = − ∂

∂x′
[µ(x′)pt(x, x

′; θ)] +
1

2

∂2

∂x′2
[σ2(x′)pt(x, x

′; θ)].

Under certain conditions, limt→∞ pt(x, z) = π(z) exists. If this limit exists and π(z) is a

probability density, i.e.

π(z) ≥ 0,

∫ ∞
−∞

π(z)dz = 1, then this is the stationary density and

limt→∞ P
x(Xt ∈ E) =

∫
E π(z)dz and

limt→∞E
xf (Xt) =

∫∞
−∞ f (z)π(z)dz

π(z) satisfies A?π(z) = 0 (Letting t→∞ in the forward equation)
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Writing the likelihood

Observations: y0, y1, y2, . . . , yq at times 0 < t1 < t2 < . . . < tq

These are samples with error taken from a particular realization of the process:

x0, x1, x2, . . . , xq
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Sampling from a SDE model for the syncytial respiratory virus
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Writing the likelihood II

L(θ, φ) =

∫
f (y|X, φ)g(x; θ)dX.
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Writing the likelihood II

L(θ, φ) =

∫
f (y|X, φ)g(x; θ)dX.

Again, let τ1 = t1 − 0, τ2 = t2 − t1, . . . , τq = tq − tq−1. Then,

g(x; θ) =

q∏
i=1

pτi(xi−1, xi; θ) =

q∏
i=1

pτi(xi|xi−1; θ).

This is identical to the likelihood function without sampling error. Brauman (1983) shows ML

estimation for equal time intervals, without sampling error. With sampling error, we have to

integrate the statistical sampling model over all the possible realizations of the process

L(θ) =

∫
. . .

∫ q∏
i=0

f (yi|xi)
q∏
i=0

pτi(xi|xi−1; θ)dx1dx2 . . . dxq
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Writing the likelihood II

L(θ, φ) =

∫
f (y|X, φ)g(x; θ)dX.

Again, let τ1 = t1 − 0, τ2 = t2 − t1, . . . , τq = tq − tq−1. Then,

g(x; θ) =

q∏
i=1

pτi(xi−1, xi; θ) =

q∏
i=1

pτi(xi|xi−1; θ).

This is identical to the likelihood function without sampling error. Brauman (1983) shows ML

estimation for equal time intervals, without sampling error. With sampling error, we have to

integrate the statistical sampling model over all the possible realizations of the process

L(θ) =

∫
. . .

∫ q∏
i=0

f (yi|xi)
q∏
i=0

pτi(xi|xi−1; θ)︸ ︷︷ ︸
Only need to be able to write this down to run MCMC

dx1dx2 . . . dxq
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Tier and Hanson 1982: Branching processes

Let Zn be the total pop. size at time n and Bi be the offspring distribution such that

pj(z) = P (Bi = j|Zn = z). Let also
E[Bi|Zn = z] = h(z)

V [Bi|Zn = z] = v(z)

Zn+1 =
∑Zn

i=1Bi (a randomly stopped sum)

Then

E[∆Zn|Zn = z] = E[(Zn+1 − Zn)|Zn = z] = E[
∑z

i=1(Bi|Zn = z)]− z = z[h(z)− 1] and

E[(∆Zn)2|Zn = z] = E[(Zn+1 − Zn)2|Zn = z] = V ar [(
∑z

i=1(Bi|Zn = z))− z]

+ {E [(
∑z

i=1(Bi|Zn = z))− z]}2

= zv(z) + {z(h(z)− 1)}2
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Diffusion approximation

E[∆Zn|Zn = z] = z[h(z)− 1],

E[(∆Zn)2|Zn = z] = zv(z) + {z(h(z)− 1)}2

• Scaled process: X(t) = Zn
L , where L is “some reference population size”

• Scaled time: t = n∆t, where ∆t << 1 is the generation time.
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replacement):

h(z) = 1 + δµ
( z
L

)
, where δ = (∆t) measures deviations from replacement and

µ(x) = r
(

1− x

k

)
is the per-capita growth rate of the logistic equation.



47

Diffusion approximation

E[∆Zn|Zn = z] = z[h(z)− 1],

E[(∆Zn)2|Zn = z] = zv(z) + {z(h(z)− 1)}2

• Scaled process: X(t) = Zn
L , where L is “some reference population size”

• Scaled time: t = n∆t, where ∆t << 1 is the generation time.

• Require: small changes in X(t) occur in small time increments ∆t (offspring mean close to

replacement):

h(z) = 1 + δµ
( z
L

)
, where δ = (∆t) measures deviations from replacement and

µ(x) = r
(

1− x

k

)
is the per-capita growth rate of the logistic equation.

• Finally, denote v(z) = d( zL). Then, as ∆t→ 0 and z
L → x
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Diffusion approximation: let ∆t→ 0 and z
L → x

1
∆tE[∆X(t)|X(t) = x] = 1

∆tE
[

(Zn+1−Zn)
L

∣∣∣X(t) = z
L

]
= 1

∆t
z
L (h(z)− 1)
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Diffusion approximation: let ∆t→ 0 and z
L → x

1
∆tE[∆X(t)|X(t) = x] = 1

∆tE
[

(Zn+1−Zn)
L

∣∣∣X(t) = z
L

]
= 1

∆t
z
L (h(z)− 1)

= 1
∆t

z
L

(
δµ
(
z
L

))
→ xµ(x) = xr

(
1− x

k

)
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Diffusion approximation: let ∆t→ 0 and z
L → x

1
∆tE[∆X(t)|X(t) = x] = 1

∆tE
[

(Zn+1−Zn)
L

∣∣∣X(t) = z
L

]
= 1

∆t
z
L (h(z)− 1)

= 1
∆t

z
L

(
δµ
(
z
L

))
→ xµ(x) = xr

(
1− x

k

)

1
∆tE[(∆X(t))2|X(t) = x] = 1

∆tE

[(
Zn+1−Zn

L

)2 ∣∣∣X(t) = z
L

]
= 1

∆t
1
L2

[
zv(z) + {z(h(z)− 1)}2

]
= 1

∆t
1
L2

[
zd
(
z
L

)
+ z2δ2

(
µ
(
z
L

))2
]

= 1
∆tx

2δ2(µ(x))2 + 1
∆t

1
Lxd(x)

= x2δ(µ(x))2 + 1
∆t(∆t)xd(x)→ xd(x) = xβ (for example)
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Diffusion approximation: let ∆t→ 0 and z
L → x

1
∆tE[∆X(t)|X(t) = x] = 1

∆tE
[

(Zn+1−Zn)
L

∣∣∣X(t) = z
L

]
= 1

∆t
z
L (h(z)− 1)

= 1
∆t

z
L

(
δµ
(
z
L

))
→ xµ(x) = xr

(
1− x

k

)

1
∆tE[(∆X(t))2|X(t) = x] = 1

∆tE

[(
Zn+1−Zn

L

)2 ∣∣∣X(t) = z
L

]
= 1

∆t
1
L2

[
zv(z) + {z(h(z)− 1)}2

]
= 1

∆t
1
L2

[
zd
(
z
L

)
+ z2δ2

(
µ
(
z
L

))2
]

= 1
∆tx

2δ2(µ(x))2 + 1
∆t

1
Lxd(x)

= x2δ(µ(x))2 + 1
∆t(∆t)xd(x)→ xd(x) = xβ (for example)

and finally lim
∆t→0

1

∆t
E[(∆X(t))j|X(t) = x] = O[(∆t)j/2−1], j > 2
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BP in random environments (Ludwig 1976, Keiding
1976)

Wn = Random environmental fluctuations at time n such that E(Wn) = 0 andV (Wn) = 1, Wn

indep. of Zm, m < n.
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Again, h(z, w) and v(z, w) are the conditional mean and variance of the offspring distribution.

Assume that

• E[v|Zn = z] = E[E[v|Zn = z,Wn]] = d
(
z
L

)
, which is the expected value of the variance

of the offspring distribution over the environmental process: demographic stochasticity.
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BP in random environments (Ludwig 1976, Keiding
1976)

Wn = Random environmental fluctuations at time n such that E(Wn) = 0 andV (Wn) = 1, Wn

indep. of Zm, m < n. Then, the offspring distribution is defined as

pj(z, w) = P (Bi = j|Zn = z,Wn = w).

Again, h(z, w) and v(z, w) are the conditional mean and variance of the offspring distribution.

Assume that

• E[v|Zn = z] = E[E[v|Zn = z,Wn]] = d
(
z
L

)
, which is the expected value of the variance

of the offspring distribution over the environmental process: demographic stochasticity.

• h(z, w) = 1 + δµ
(
z
L

)
+
√
δe
(
z
L

)
w, where ∆t = δ = 1

L, and the fluctuations due to the

environment are of order
√
δ (a sum of a large number of iid random variables).
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Diffusion approximation of a BPRE (Ludwig 1976,
Keiding 1976)

Following the above conditions we get that

lim∆t→0
1

∆tE[∆X(t)|X(t) = x] = xµ(x) = xr
(
1− x

k

)
lim∆t→0

1
∆tE[(∆X(t))2|X(t) = x] = xd(x) + x2e(x) = xβ + x2α
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• xβ = Expected value of the variance of the offspring distribution: on average, how much

dos the offspring distribution varies.
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Diffusion approximation of a BPRE (Ludwig 1976,
Keiding 1976)

Following the above conditions we get that

lim∆t→0
1

∆tE[∆X(t)|X(t) = x] = xµ(x) = xr
(
1− x

k

)
lim∆t→0

1
∆tE[(∆X(t))2|X(t) = x] = xd(x) + x2e(x) = xβ + x2α

• xβ = Expected value of the variance of the offspring distribution: on average, how much

does the offspring distribution varies.

• x2α = the variance of the expected value of the offspring distribution: how much does the

mean of the offspring distribution changes over time

• References: Ludwig 1976, Keiding 1976, Braumann 1983 a,b, Dennis and Patil 1984,

Dennis 1989, Goel and Richter-Dyn 1974, Turelli 1977 (random environment and stochastic

calculus), Ethier and Kurtz 1986, Tier and Hanson 1982, Dennis 2002 (Allee effects with

environmental and demographic fluctuations)
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The likelihood for the logistic SDE with environmental
stochasticity

Dennis 1989: shows an approximation to the time-dependent transition distribution using

matching moments from a gamma distribution. The moments came from an approximation to

the Backward equation using singular perturbation methods. Wiesak (1988, PhD U of Idaho,

Math Dept.) gave a rigorous justification for this approximation. The time dependent transition

is then used to write down the likelihood function without sampling error.
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The likelihood for the logistic SDE with environmental
stochasticity

Dennis 1989: shows an approximation to the time-dependent transition distribution using

matching moments from a gamma distribution. The moments came from an approximation to

the Backward equation using singular perturbation methods. Wiesak (1988, PhD U of Idaho,

Math Dept.) gave a rigorous justification for this approximation. The time dependent transition

is then used to write down the likelihood function without sampling error.

And with sampling error? We need to review some basic concepts first.
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Brief review: Bayesian statistics
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What is bayesianism? The subjectivist point of view

What is meant by a statement such as “the probability that this coin will land heads up is 1
2”?

• The most common interpretation is that the long run frequency of heads approaches 1
2.
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What is bayesianism? The subjectivist point of view

What is meant by a statement such as “the probability that this coin will land heads up is 1
2”?

• The most common interpretation is that the long run frequency of heads approaches 1
2.

• Bayesians who make this statement mean that their prior opinion is such that they would as

soon guess heads or tails.

• Consider a game in which if the event A occurs, the bayesian will be paid 1 $. Then, P (A)

is the amount of money he would be willing to pay to buy into the game.

• This concept of probability is personal: P (A) may vary from person to person.

• For bayesians, probability is a model for quantifying the strength of personal opinions.

• In bayesian inference, evidence is collected that is meant to be consistent or inconsistent

with a given hypothesis and

• as evidence accumulates, the degree of belief in a hypothesis ought to change.

• With enough evidence, it should become very high or very low.
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Bayesian inference

Bayesian inference

• uses a numerical estimate of the degree of belief in a hypothesis before evidence has been

observed and
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Bayesian inference

Bayesian inference

• uses a numerical estimate of the degree of belief in a hypothesis before evidence has been

observed and

• calculates a numerical estimate of the degree of belief in the hypothesis after evidence has

been observed.

• This process is repeated when additional evidence is obtained.

• Bayesian inference usually relies on degrees of belief, or subjective probabilities in the

induction process.

Suppose the prior prob. of A is P (A). Upon observing event C, the opinion about A changes

to P (A|C):

P (A|C) =
P (A andC)

P (C)
=
P (C|A)P (A)

P (C)
.
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Bayesian inference: the posterior distribution

P (A|C) =
P (A andC)

P (C)
=
P (C|A)P (A)

P (C)
.

• Bayesian’s prior opinion about the value of θ is given by a density g(θ).

• Having observed the data X = x, where X has density function f (x|θ), the new opinion

about θ is

h(θ|x) =
f (x|θ)g(θ)∫
f (x|θ)g(θ)dθ

∝ f (x|θ)g(θ)

• Note that: the tool for making inference, the posterior distribution h(x|θ) is defined in

terms of the degree of belief about θ.

• Sample space probabilities are no longer used, hypothetical repetitions of a random process

are no longer considered.

• Deciding between competing hypotheses in light of data reduces to compute their posterior

probabilities.
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Suppose we follow the fate of n individuals during a single time interval. Let X = number of

survivors be binomially distributed:

f (x|p) =

(
n

x

)
px(1− p)n−x.

Now, in the absence of previous information we may postulate that the prior distribution of p is

uniform:

g(p) = 1, 0 ≤ p ≤ 1.

Suppose n = 20 and x = 5. The posterior distribution is

h(p|x) ∝ f (x|p)g(p) =

(
n

x

)
px(1− p)n−x.
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An example: Binomial survival

Suppose we follow the fate of n individuals during a single time interval. Let X = number of

survivors be binomially distributed:

f (x|p) =

(
n

x

)
px(1− p)n−x.

Now, in the absence of previous information we may postulate that the prior distribution of p is

uniform:

g(p) = 1, 0 ≤ p ≤ 1.

Suppose n = 20 and x = 5. The posterior distribution is

h(p|x) ∝ f (x|p)g(p) =

(
n

x

)
px(1− p)n−x.

This posterior distribution represents the new opinion of a Bayesian who was initially indifferent

to the value of p after observing 5 survivals in 20 trials.
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Posterior distribution for binomial survival:
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The uniform prior expresses an indifference about the possible values of p, which is modified

after the experiment.
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Quantifying prior beliefs using a beta distribution

Using a prior beta distribution for p we get:

g(p) ∝ pa−1(1− p)b−1
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Using a prior beta distribution for p we get:

g(p) ∝ pa−1(1− p)b−1

and the posterior distribution of p given x is:

h(p|x) ∝ f (x|p)g(p) =

(
n

x

)
px(1− p)n−xpa−1(1− p)b−1 ∝ pa+x−1(1− p)n+b−x−1,

a new beta distribution with parameters a′ = a + x and b′ = b + n− x. Note that

µprior = a
a+b whereas µpost = a′

a′+b′

= a+x
a+b+n = a+b

a+b+n

(
a
a+b

)
+ n

a+b+nx̄,

where x̄ = x/n is the sample mean.



95

Quantifying prior beliefs using a beta distribution
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and the posterior distribution of p given x is:

h(p|x) ∝ f (x|p)g(p) =

(
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)
px(1− p)n−xpa−1(1− p)b−1 ∝ pa+x−1(1− p)n+b−x−1,
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µprior = a
a+b whereas µpost = a′

a′+b′

= a+x
a+b+n = a+b

a+b+n

(
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)
+ n

a+b+nx̄,

where x̄ = x/n is the sample mean.

The posterior mean is a weighted average of the prior mean and the sample mean!
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Quantifying prior beliefs using a beta distribution

Using a prior beta distribution for p we get:

g(p) ∝ pa−1(1− p)b−1

and the posterior distribution of p given x is:

h(p|x) ∝ f (x|p)g(p) =

(
n

x

)
px(1− p)n−xpa−1(1− p)b−1 ∝ pa+x−1(1− p)n+b−x−1,

a new beta distribution with parameters a′ = a + x and b′ = b + n− x. Note that

µprior = a
a+b whereas µpost = a′

a′+b′

= a+x
a+b+n = a+b

a+b+n

(
a
a+b

)
+ n

a+b+nx̄,

where x̄ = x/n is the sample mean.

The posterior mean is a weighted average of the prior mean and the sample mean!

As n grows large, x/n approaches true p0 value and µpost approaches p0 (and var. goes to 0).
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• Suppose that at time t, the survival probability xt is drawn from a stochastic process Xt(θ)

that lives between 0 and 1.
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Bayesian inference for more ‘realistic’ problems:

• Suppose that at time t, the survival probability xt is drawn from a stochastic process Xt(θ)

that lives between 0 and 1.

• Furthermore, let us suppose that the form of distribution of Xt(θ) depends only on the

previous realization Xt−1(θ) = xt−1 (Xt(θ) is a Markov process that you do not observe).

• Researcher interested in the per unit of time survival probability

• At each time step, take a random sample of nt individuals from the population at large,

t = 0, . . . , k and record their fate during one time unit (e.g.: one-year olds survival).

• Data: pairs (n0, y0), (n1, y1), . . . , (nk, yk).
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Stochastic time-varying survival

Unobserved Markov process Xt(θ) = f (Xt−1(θ))

Observations (Y|X = x) ∼ Binom (n,x)
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t = 0, 1, 2, . . . , k. The vector of unobserved trajectory of the survival process is Xt.
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Stochastic time-varying survival

Unobserved Markov process Xt(θ) = f (Xt−1(θ))

Observations (Y|X = x) ∼ Binom (n,x)

t = 0, 1, 2, . . . , k. The vector of unobserved trajectory of the survival process is Xt.

This defines a State-Space model or Hidden-Markov process

The likelihood of a single replicated time series of observations is

L (θ) =

∫
P (Y|X)g(X; θ)dX,

where g(X; θ) is the joint distribution of a trajectory X of the Markov Chain, starting at X0.
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Hierarchical models in Ecology

Y ∼ f (y|X, φ)

X ∼ g(x|θ)

it is known that the likelihood is

L(θ, φ) =

∫
f (y|X, φ)g(x; θ)dX.

A few examples include:

• Stochastic population models with added observation error (De Valpine and Hastings 2002,

Clark and Bjornstad 2004, Newman et al. 2006, Dennis et al 2006)

• Stochastic models of species abundance distributions (Etienne and Olff 2005)

• Capture-recapture models with uncertain capture probabilities (George and Robert 1992)
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Non-linear, non-Gaussian SSM

Y ∼ f (y|X, φ)

X ∼ g(x|θ)

it is known that the likelihood is

L(θ, φ) =

∫
f (y|X, φ)g(x; θ)dX.

• Maximum likelihood was known to be very difficult for these models.
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X ∼ g(x|θ)

it is known that the likelihood is

L(θ, φ) =

∫
f (y|X, φ)g(x; θ)dX.

• Maximum likelihood was known to be very difficult for these models.

• Bayesian solutions to the study of hierarchical population models were much easier to

implement.
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Non-linear, non-Gaussian SSM

Y ∼ f (y|X, φ)

X ∼ g(x|θ)

it is known that the likelihood is

L(θ, φ) =

∫
f (y|X, φ)g(x; θ)dX.

• Maximum likelihood was known to be very difficult for these models.

• Bayesian solutions to the study of hierarchical population models were much easier to

implement.

• However, it can be very difficult to specify non-informative priors to do “objective bayesian

statistics” for hierarchical models (Nancy Reid, Mexico, 2008):

– Bayesian hierarchical Poisson models, (Gelman et al 2007)

– Heinrich 2005, Proceedings of Phystat05 (Poisson (εs + b), s of interest, additional

Poisson measurements of b and ε)

– Bayesian probit regression (Jones 2008, Siddhartha and Chib 1984)
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The Bayesian solution I

• Circumvents the problem of high dimensional integration

• Assumes (θ, φ) are random variables.

• Also assume that X are unknown and random

• Uses Bayes’s rule and MCMC to sample from:

π(θ, φ,X|y) =
f (y|X, φ)g(x|θ)π(θ, φ)∫

f (y|X, φ)g(x|θ)π(θ, φ)dXdθdφ

• The marginal posterior distribution π(θ, φ|y) is obtained by integrating the above posterior

over X
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The Bayesian solution II

Markov Chain Monte Carlo algorithms yield B independent samples from π(θ, φ,X|y):

φ(1) θ(1) X(1)

φ(2) θ(2) X(2)

... ... ...

φ(B) θ(B) X(B)
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Markov Chain Monte Carlo algorithms yield B independent samples from π(θ, φ,X|y):

φ(1) θ(1) X(1)

φ(2) θ(2) X(2)

... ... ...

φ(B) θ(B) X(B)

The marginal posterior distribution π(θ, φ|y) is simply obtained by discarding the X from

{φ(i), θ(i), X(i)}Bi=1,

leaving

{φ(i), θ(i)}Bi=1,

and no integration is needed.
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The Bayesian solution II

Markov Chain Monte Carlo algorithms yield B independent samples from π(θ, φ,X|y):

φ(1) θ(1) X(1)

φ(2) θ(2) X(2)

... ... ...

φ(B) θ(B) X(B)

The marginal posterior distribution π(θ, φ|y) is simply obtained by discarding the X from

{φ(i), θ(i), X(i)}Bi=1,

leaving

{φ(i), θ(i)}Bi=1,

and no integration is needed. The mean values and variances of π(θ, φ|y) are simply the mean

values and variances of

{φ(i), θ(i)}Bi=1.
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The Metropolis Hastings algorithm

Purpose: to draw samples from a pdf π(x).How? By implementing four steps:
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4. Repeat many times.
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The Metropolis Hastings algorithm

Purpose: to draw samples from a pdf π(x).How? By implementing four steps:

1. If in x initially, propose a move from x to y from q(x→ y).

2. Calculate the Hastings ratio:

a(x, y) = min

(
1,
π(y)q(y → x)

π(x)q(x→ y)

)
3. Accept the move with probability a(x, y). Else, return x.

4. Repeat many times.

The process of generating x’s from those steps is a Markov Chain whose stationary pdf is

guaranteed to be π(x). So all you have to do is wait long enough to get the desired samples.
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When is M-H. useful?

• When there’s no closed expression for π(x), yet the ratio π(x)/π(y) has a closed expression.

• Example: our bayesian posterior:

π(θ, φ,X|y) =
f (y|X, φ)g(x|θ)π(θ, φ)∫

f (y|X, φ)g(x|θ)π(θ, φ)dXdθdφ

and
π(θ, φ,X|y)

π(θ′, φ′,X′|y)
=

f (y|X, φ)g(x|θ)π(θ, φ)

f (y|X′, φ′)g(x′|θ′)π(θ′, φ′)
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Why it works? -Some informal heuristics. . .

• Let r(x→ y) be the transition pdf of the Markov chain generated by M-H.

• Pick y 6= x such that

π(y)q(y → x)

π(x)q(x→ y)
≤ 1, i.e a(x, y) = min

(
1,
π(y)q(y → x)

π(x)q(x→ y)

)
≤ 1
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Why it works? -Some informal heuristics. . .

• Let r(x→ y) be the transition pdf of the Markov chain generated by M-H.

• Pick y 6= x such that

π(y)q(y → x)

π(x)q(x→ y)
≤ 1, i.e a(x, y) = min

(
1,
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)
≤ 1

Then:
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π(y)q(y → x)

π(x)q(x→ y)
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• Let r(x→ y) be the transition pdf of the Markov chain generated by M-H.

• Pick y 6= x such that
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(
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)
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Then:
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π(x)q(x→ y)

= π(y)q(y → x)
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Why it works? -Some informal heuristics. . .

• Let r(x→ y) be the transition pdf of the Markov chain generated by M-H.

• Pick y 6= x such that

π(y)q(y → x)

π(x)q(x→ y)
≤ 1, i.e a(x, y) = min

(
1,
π(y)q(y → x)

π(x)q(x→ y)

)
≤ 1

Then:

π(x)r(x→ y) = π(x)q(x→ y)a(x, y)

= π(x)q(x→ y)
π(y)q(y → x)

π(x)q(x→ y)

= π(y)q(y → x)

= π(y)q(y → x)a(y, x), since a(x, y) ≤ 1⇒ a(y, x) = 1
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Why it works? -Some informal heuristics. . .

• Let r(x→ y) be the transition pdf of the Markov chain generated by M-H.

• Pick y 6= x such that

π(y)q(y → x)

π(x)q(x→ y)
≤ 1, i.e a(x, y) = min

(
1,
π(y)q(y → x)

π(x)q(x→ y)

)
≤ 1

Then:

π(x)r(x→ y) = π(x)q(x→ y)a(x, y)

= π(x)q(x→ y)
π(y)q(y → x)

π(x)q(x→ y)

= π(y)q(y → x)

= π(y)q(y → x)a(y, x), since a(x, y) ≤ 1⇒ a(y, x) = 1

= π(y)r(y → x), which is the detailed balance equation.



128

The data cloning method heuristics (Lele et al. 2007) -
Robert (1993):

Recall that for the general model
Y ∼ f (y|X, φ)

X ∼ g(x|θ)

the likelihood is

L(θ, φ) =

∫
f (y|X, φ)g(x|θ)dX

and

π(1)(θ, φ|y) =

{∫
f (y|X, φ)g(x|θ)dX

}
π(θ, φ)

h(y)

where

h(y) =

∫
f (y|X, φ)g(x|θ)π(θ, φ)dXdθdφ.
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The data cloning method heuristics (Lele et al. 2007) -
Robert (1993):

Substitute original posterior back again as a prior and keep doing that:

π(2)(θ, φ|y) =
{∫ f(y|X,φ)g(x|θ)dX}π(1)(θ,φ)

h(2)(y)

=
{∫ f(y|X,φ)g(x|θ)dX}2π(θ,φ)

h(2)(y)

= {L(θ,φ)}2π(θ,φ)

h(2)(y)

and continuing in this fashion:

π(k)(θ, φ|y) = {L(θ,φ)}kπ(θ,φ)

h(k)(y)
.
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The data cloning method heuristics (Lele et al. 2007):

Let (θ̂, φ̂) be such that L(θ̂, φ̂; y) > L(θ, φ; y) for all (θ, φ). (MLE def.) Given that π(θ, φ) is

positive everywhere on the parameter space, as k grows large

π(k)(θ, φ|y)

π(k)(θ̂, φ̂|y)
=

[L(θ, φ; y)]k[
L(θ̂, φ̂; y)

]k →
{

0 if (θ, φ) 6= (θ̂, φ̂)

1 if (θ, φ) = (θ̂, φ̂)

• That is, the fixed point for the iterated map is a degenerate distribution at (θ̂, φ̂) and

independent of the initial distribution π.

• Fact: the mean of a degenerate distribution is the point at which it degenerates.

• So the mean of the kth posterior distribution for large enough k approaches the MLE of

(θ, φ).

• Finally, Lele’s result: as k →∞, π(k)(θ, φ|y) converges to a MVN([θ̂, φ̂]′, 1
kI
−1(θ̂, φ̂)),

where I(θ̂, φ̂) is the Fisher information matrix from the original likelihood function

regardless of π(θ, φ).
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Testing Data Cloning: stochastic population growth

The Stochastic Gompertz Model (Dennis et al. 2006):

Nt = Nt−1 exp [a + b lnNt−1 + σZt] where Zt ∼ iid N(0, 1)

and Yt = lnNt + Ft where Ft ∼ iid N(0, τ 2)
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Testing Data Cloning: The stochastic Gompertz model
with closed-form likelihood

Nt = Nt−1e
[(a+bln(Nt−1)+σEt]

Let xt = ln(nt) and take c = b + 1, then we have a first-order autoregressive process

(Reddingius, 1971, Dennis and Taper 1994):

Xt = Xt−1 + a + bXt−1 + Et

= a + cXt−1 + Et

Density independence is expressed through b = 0 or c = 1. For |c| < 1 the stationary

distribution exists and:

E[X∞] = lim
t→∞

E[Xt] =
a

1− c

V ar[X∞] = lim
t→∞

V ar[Xt] =
σ2

1− c2
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Stochastic Gompertz with observation error (Dennis et
al 2006):

• Let Yt be the estimated logarithmic population abundance, such that:

Yt = Xt + Ft

= a + cXt−1 + Et + Ft

= a + c(Yt−1 − Ft−1) + Et + Ft,

where Ft ∼ N(0, τ 2).

• The Markov property is lost: it is an ARMA model (Autorregresive Moving Average

process).

• There is extra info. in the autocorrelation structure about σ2 and τ 2.

• The ML parameter estimates are obtained via the Kalman filter (lots of conditioning) or

using MVN:
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The Multivariate Normal model:

No observation error: we have a series of recorded observations

x0, x1, . . . xq.

Assuming X0 arises from the stationary distribution, the joint pdf of X0, X1, . . . Xq = X has

the following distribution:

X ∼MVN(µ,Σ)

where

Σ =
σ2

1− c2


1 c c2 . . . cq

c 1 c . . . cq−1

c2 c 1 . . . cq−2

... ... ... . . . ...

cq cq−1 cq−2 . . . c


and

µ =
a

1− c
j,

j being a (q + 1)× 1 vector of ones.
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The Multivariate Normal model:

With observation error: given the observations,y0, y1, . . . yq, the joint pdf of Y0, Y1, . . . Yq is

multivariate normal: writing Y = X + F, we get

Y ∼MVN(µ,V)

where µ = a
1−cj, j being a (q + 1)× 1 vector of ones, and V = Σ + τ 2I. The variance

covariance matrix of the process is:

V =



σ2

1−c2 + τ 2 cσ2

1−c2
c2σ2

1−c2 . . . cqσ2

1−c2
cσ2

1−c2
σ2

1−c2 + τ 2 cσ2

1−c2 . . . cq−1σ2

1−c2
c2σ2

1−c2
cσ2

1−c2
σ2

1−c2 + τ 2 . . . cq−2σ2

1−c2... ... ... . . . ...
cqσ2

1−c2
cq−1σ2

1−c2
cq−2σ2

1−c2 . . . σ2

1−c2 + τ 2

 .

Therefore, the log-likelihood needed for parameter estimation is:

lnL(a, c, σ2, τ 2) = −q + 1

2
ln(2π)− 1

2
ln|V| − 1

2
(y − µ)′V−1(y − µ)

(First differences log-likelihood -REML- can also be obtained and behave nicely)
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Testing Data Cloning: comparing with Gompertz SSM
results

three different sets of priors. The priors with smaller
variances produced posteriors that were closer to the actual
ML estimates, even if such priors were substantially biased.
As well, the standard errors obtained with the data cloning
method were quite close to the estimates of the ML
standard errors arising from the Fisher information matrix
(Table 2).

Stochastic Ricker model with Poisson errors

Gause’s (1934) laboratory experiments on the population
growth of two Paramecium species (P. aurelia, P. caudatum) are
the iconic illustrations of sigmoidal growth curves in ecology
textbooks. Although Gause and textbooks alike plotted
mean abundance across replicate cultures, the individual
replicate cultures display considerable stochastic variability
(Fig. 2). The variability is a combination of stochasticity in
the process itself as well as observation error in the data.
Earlier analyses have used either process noise or observa-
tion error, but not both (Pascual & Kareiva 1996). Gause
sampled the microbe populations by counting the number
of cells in a small volume (0.5 cm3) of growth media
removed from well-mixed cultures. The sampling mechan-
ism can be reasonably modelled with a Poisson distribution,
with mean equal to the concentration of cells per volume
sampled in the culture.

We analysed Gause’s experimental data (species growing
separately) with a Ricker-Poisson state-space model. The
underlying population growth process in the Ricker-Poisson
is a stochastic version of the Ricker model (Dennis & Taper
1994), and the sampling error model is Poisson. The Ricker-
Poisson state-space model is given by

Nt ¼ Nt"1 expða þ bNt"1 þ EtÞ;

Ot & PoissonðNtÞ:

Here, Nt is population abundance (cells per volume) of a
culture at time t (days), Ot is the cells per volume in the
sample at time t, and the process noise Et has a nor-

mal(0,r2) distribution. For this model, the parameter a (not
the coefficient parameter b) measures the strength of density
dependence, because it is related to the eigenvalue of the
deterministic one-dimensional map near equilibrium (May &
Oster 1976). The parameter b serves to scale the level of the
equilibrium population size. We define one unit of volume
to be the volume of a sample, 0.5 cm3. The initial cell
concentration in the cultures was set experimentally and is
therefore treated as a known parameter in the model. All
cultures were started with exactly two cells per unit volume.

The likelihood function for time series observations
arising from this stochastic Ricker-Poisson model cannot be
written down in an analytical form. To complicate matters,
Gause did not record data for any of the cultures at time

Table 2 Maximum likelihood estimates (and standard errors) calculated for the parameters a, c, r and s in the Gompertz state-space model,
using numerical maximization (first column) and data cloning with three different sets of prior distributions (second, third, fourth columns)

Parameters ML estimates Data cloning 1 Data cloning 2 Data cloning 3

a 0.3929 (0.5696) 0.3956 (0.5509) 0.4136 (0.4640) 0.4103 (0.5876)
c 0.7934 (0.3099) 0.792 (0.2999) 0.7821 (0.2524) 0.7839 (0.3202)
r 0.3119 (0.2784) 0.3132 (0.2751) 0.3217 (0.2262) 0.3207 (0.2934)
s 0.4811 (0.1667) 0.4802 (0.1562) 0.4768 (0.1492) 0.4764 (0.1816)

All data cloning estimates used k ¼ 240 clones. Data cloning 1: priors were normal(0,1), uniform()1,1), lognormal()0.5,10), lognormal(0,1)
[notation is normal(mean,variance), uniform(lower bound, upper bound), lognormal(normal mean, normal variance)]. Data cloning 2: priors
were normal(0,10 000), uniform()1,1), lognormal(0,10 000), lognormal(0,10 000). Data cloning 3: priors were normal(3,1), uniform()1,1),
normal()2,100), lognormal(0,10). Data were time series abundances of American Redstart (Setophaga ruticilla), from a survey location in the
North American Breeding Bird Survey; numerical values appear in Table 1 of Dennis et al. (2006).

Figure 2 Population abundances of two Paramecium species, three
replicate cultures each (solid lines), from Gause (1934: Appendix I,
Table 3), plotted with solution trajectories from deterministic
Ricker population growth model (dashed lines). Upper three time
series: P. aurelia. Lower three time series: P. caudatum. Ricker
solution trajectories use maximum likelihood parameter estimates
from the Ricker-Poisson state-space model, computed with data
cloning for the combined replicates (Table 3).
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Data Cloning continued

The method apparently

• Relies on asymptotic symmetric confidence intervals that can have coverage failures when

using small data sets and are symmetric.

• Cannot easily get likelihood function evaluated at the maximum, so cannot:

– Perform likelihood ratio tests

– Draw profile likelihoods

– Do model selection via information criteria (AIC, BIC, . . .)

So cannot answer many scientific/biological questions !!!
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Three problems of interest:

1. Drawing a profile likelihood (better CI’s) seems computationally prohibitive (1 DC run + 1

MC integral at each value of the profiled parameter).

2. If DC does not yield the value of the maximum L(θ̂), how do we carry model selection via

IC like AIC:

AIC1 − AIC2 = −2 ln
L̂1

L̂2

+ 2(d1 − d2) = ?

3. If one posits that

H0 : θ1 = θ2 = θ3 or that

H1 : θ1 6= θ2 6= θ3.

How do we compute the ratio of integrals

Λ =
L0(θ̂)

L1(θ̂1, θ̂2, θ̂3)
= ?

To answer these questions all we need is to know how to compute likelihood ratios (an example

next).
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Back to Gause’s 1934 data:

three different sets of priors. The priors with smaller
variances produced posteriors that were closer to the actual
ML estimates, even if such priors were substantially biased.
As well, the standard errors obtained with the data cloning
method were quite close to the estimates of the ML
standard errors arising from the Fisher information matrix
(Table 2).

Stochastic Ricker model with Poisson errors

Gause’s (1934) laboratory experiments on the population
growth of two Paramecium species (P. aurelia, P. caudatum) are
the iconic illustrations of sigmoidal growth curves in ecology
textbooks. Although Gause and textbooks alike plotted
mean abundance across replicate cultures, the individual
replicate cultures display considerable stochastic variability
(Fig. 2). The variability is a combination of stochasticity in
the process itself as well as observation error in the data.
Earlier analyses have used either process noise or observa-
tion error, but not both (Pascual & Kareiva 1996). Gause
sampled the microbe populations by counting the number
of cells in a small volume (0.5 cm3) of growth media
removed from well-mixed cultures. The sampling mechan-
ism can be reasonably modelled with a Poisson distribution,
with mean equal to the concentration of cells per volume
sampled in the culture.

We analysed Gause’s experimental data (species growing
separately) with a Ricker-Poisson state-space model. The
underlying population growth process in the Ricker-Poisson
is a stochastic version of the Ricker model (Dennis & Taper
1994), and the sampling error model is Poisson. The Ricker-
Poisson state-space model is given by

Nt ¼ Nt"1 expða þ bNt"1 þ EtÞ;

Ot & PoissonðNtÞ:

Here, Nt is population abundance (cells per volume) of a
culture at time t (days), Ot is the cells per volume in the
sample at time t, and the process noise Et has a nor-

mal(0,r2) distribution. For this model, the parameter a (not
the coefficient parameter b) measures the strength of density
dependence, because it is related to the eigenvalue of the
deterministic one-dimensional map near equilibrium (May &
Oster 1976). The parameter b serves to scale the level of the
equilibrium population size. We define one unit of volume
to be the volume of a sample, 0.5 cm3. The initial cell
concentration in the cultures was set experimentally and is
therefore treated as a known parameter in the model. All
cultures were started with exactly two cells per unit volume.

The likelihood function for time series observations
arising from this stochastic Ricker-Poisson model cannot be
written down in an analytical form. To complicate matters,
Gause did not record data for any of the cultures at time

Table 2 Maximum likelihood estimates (and standard errors) calculated for the parameters a, c, r and s in the Gompertz state-space model,
using numerical maximization (first column) and data cloning with three different sets of prior distributions (second, third, fourth columns)
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All data cloning estimates used k ¼ 240 clones. Data cloning 1: priors were normal(0,1), uniform()1,1), lognormal()0.5,10), lognormal(0,1)
[notation is normal(mean,variance), uniform(lower bound, upper bound), lognormal(normal mean, normal variance)]. Data cloning 2: priors
were normal(0,10 000), uniform()1,1), lognormal(0,10 000), lognormal(0,10 000). Data cloning 3: priors were normal(3,1), uniform()1,1),
normal()2,100), lognormal(0,10). Data were time series abundances of American Redstart (Setophaga ruticilla), from a survey location in the
North American Breeding Bird Survey; numerical values appear in Table 1 of Dennis et al. (2006).

Figure 2 Population abundances of two Paramecium species, three
replicate cultures each (solid lines), from Gause (1934: Appendix I,
Table 3), plotted with solution trajectories from deterministic
Ricker population growth model (dashed lines). Upper three time
series: P. aurelia. Lower three time series: P. caudatum. Ricker
solution trajectories use maximum likelihood parameter estimates
from the Ricker-Poisson state-space model, computed with data
cloning for the combined replicates (Table 3).
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The latent variable model component

Let the log-population abundance be Xt = lnNt. Specify a family of models of the form:

Xt = m(Xt−1) + σZt, where Zt ∼ N(0, 1).

Two forms of density-dependence are:

m(x) =

{
x + a− bex (Ricker)

x + ln(λ)− ln(1 + βex) (Beverton-Holt)

The joint distribution for a single time series of log-abundances xi, i = 0, . . . , q is:

g(x|θ) =

q∏
t=1

(2πσ2)−1/2exp

(
−(xt −m(xt−1))2

2σ2

)
.

For the Ricker model θ = [a b σ2]′ and for the B-H θ = [λβ σ2]′.
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The hierarchical model:

Sampling from well-mixed liquid cultures suggests using a Poisson sampling model:

f (y|x, φ) =

q∏
t=2

e−ntnytt
yt!

,

where nt = exp(xt). The distribution f (y|x, φ) will serve as the observation component in the

Likelihood function for three population cultures:

L(θ1, θ2, θ3) =

3∏
j=1

∫
f (yj|xj)g(xj|θj)dxj.
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Three problems of interest:

1. Drawing a profile likelihood (better CI’s) seems computationally prohibitive (1 DC run + 1

MC integral at each value of the profiled parameter).

2. If DC does not yield the value of the maximum L(θ̂), how do we carry model selection via

IC like AIC:

AIC1 − AIC2 = −2 ln
L̂1

L̂2

+ 2(d1 − d2) = ?

3. If one posits that

H0 : θ1 = θ2 = θ3 or that

H1 : θ1 6= θ2 6= θ3.

How do we compute the ratio of integrals

Λ =
L0(θ̂)

L1(θ̂1, θ̂2, θ̂3)
= ?

To answer these questions all we need is to know how to compute likelihood ratios.



143

Likelihood ratios for data cloning:

Let (θ(0), φ(0)) and (θ(1), φ(1)) be two particular sets of parameter values. To compute

L(θ(0), φ(0))

L(θ(1), φ(1))
, do:

1. Generate m samples x(1),x(2), . . . ,x(m) from the posterior of the latent variables via

MCMC (straightforward):

h(x|y, θ(1), φ(1)) ∝ f (y|x, φ(1))g(x|θ(1))

2. Calculate the LR as:

L(θ(0), φ(0))

L(θ(1), φ(1))
≈ 1

m

m∑
j=1

f (y|x(j), φ(0))g(x(j)|θ(0))

f (y|x(j), φ(1))g(x(j)|θ(1))
.
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Profile likelihood for DC:

Let θ = [θS, θC ]. To draw profile for θS, do

1. Calculate ML estimates (θ̂, φ̂) using DC.

2. For θS select an array θ
(1)
S , θ

(2)
S , . . . , θ

(J)
S bracketing the ML estimates broadly enough.

3. For each value θ
(1)
S , θ

(2)
S , . . . , θ

(J)
S in turn, carry DC to maximize the likelihood w.r. to θC

getting (
{θ̂(1)

C , φ̂(1)}, {θ̂(2)
C , φ̂(2)}, . . . , {θ̂(J)

C , φ̂(J)}
)
.

4. Generate m samples x(1),x(2), . . . ,x(m) from h(x|y, θ̂, φ̂).

5. Then, for each θ
(i)
S , i = 1, 2, . . . , J calculate the sample average:

L(θ
(i)
S , θ̂

(i)
C , φ̂

(i))

L(θ̂, φ̂)
≈ 1

m

m∑
j=1

f (y|x(j), φ̂(i))g(x(j)|θ(i)
S , θ̂

(i)
C )

f (y|x(j), φ̂)g(x(j)|θ̂)
.

Use a single MCMC chain + vectorized calculations this algorithm is fast!
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Why the LR and PL algorithms work? (E. Thompson,
U.W., 1991)

L(θ,φ,y)
L(θ0,φ0,y) = L(θ,φ,y)

L(θ0,φ0,y)

∫
x∈S h(x|y, θ, φ)dx

= L(θ,φ,y)
L(θ0,φ0,y)

∫
x∈S h(x|y, θ, φ)h(x|y,θ0,φ0)

h(x|y,θ0,φ0)dx

=
∫

x∈S
L(θ,φ,y)h(x|y,θ,φ)

L(θ0,φ0,y)h(x|y,θ0,φ0)h(x|y, θ0, φ0)dx

=
∫

x∈S
f(y,x|θ,φ)
f(y,x|θ0,φ0)h(x|y, θ0, φ0)dx

=
∫

x∈S
f(y|x,φ)g(x|θ)
f(y|x,φ0)g(x|θ0)h(x|y, θ0, φ0)dx

and

R.H.S. ≈ 1

m

m∑
j=1

f (y|x(j), φ)g(x(j)|θ)

f (y|x(j), φ0)g(x(j)|θ0)
.

from which a likelihood profile can be easily computed using vectorized calculations.
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Likelihood ratios for data cloning:
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Lele et al CI’s vs. 95% profile likelihood intervals:
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Lele et al CI’s vs. 15% likelihood intervals: some
relevant conclusions

• For σ2: if size of its variability is under estimated, the variability around the estimated

probability of crossing a critical pop. threshold is under-estimated!!

• LRT for

H0 : θ1 = θ2 = θ3 vs.

H1 : θ1 6= θ2 6= θ3

fails to reject H0 so Gause’s replicates likely arose under the same process.

• The stochastic Beverton-Holt model (2) explains the data better than the stochastic Ricker

model (1) because

AIC1 − AIC2 = −2 ln
L̂1

L̂2

+ 2(d1 − d2) = 3.7387,

thus a particular form of density-dependence seems to explain the data the best (scramble

vs. contest intra-specific competition). Model selection process does NOT stop here!
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Other current computer intensive methods

1. Filtering: sequential factorization of the likelihood (Newman et al 2009)

2. Gride-based methods (Kitagawa 1987, de Valpine and Hastings 2002) using numerical

integration methods

3. Sequential Monte Carlo methods (Particle Filtering), Newman et al 2009, Liu 2001,

Thomas et al 2005)

4. Importance sampling (E. Thompson 1994, UW, genetics of pedigrees, Donnelly, Nordborg

and Joyce 2001 -Genetics- the coalescent process)

5. Monte Carlo Expectation Maximization (EM) algorithm (Liu 2001)

6. Iterated Filtering methodology: “plug-and-play” inference (Ionides, Breto and King 2006,

Breto et al 2009), examples with SDE’s.
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Simulating Markov Chains and carrying inference

• Is there a way to take advantage of the ease with which simulations are done to carry

statistical inference?
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Simulating Markov Chains and carrying inference

• Is there a way to take advantage of the ease with which simulations are done to carry

statistical inference?

• Yes, according to the so-called “Likelihood-free” inference methods (in a bit).
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Simulating Markov Chains and carrying inference

• Is there a way to take advantage of the ease with which simulations are done to carry

statistical inference?

• Yes, according to the so-called “Likelihood-free” inference methods (in a bit).

• Regardless of the method, don’t try to pool a big Hidden-Markov model into a big,

computer intensive bag!!

• ALWAYS seek ways to diagnose the inference methods and results, try to keep it simple!!.
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MCMC without likelihoods

Marjoram, Molitor, Plagnol y Tavare 2003 PNAS 100:15324-15328. Objective: sampling from

f (θ|D) ∝ P (D|θ)π(θ)

1. Now in θ

2. Propose a change to θ′ according to q(θ → θ′)

3. Generate D′ using θ′

4. If D′ = D, go to next step, else return θ

5. Calculate

a(θ, θ′) = min

(
1,
π(θ′)q(θ′ → θ)

π(θ)q(θ → θ′)

)
6. Accept θ′ with probability a(θ, θ′), else return θ

Repeat until obtaining many (independent) samples from the posterior f (θ|D).
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Why it works?

• Let r(θ → θ′) be the transition pdf of the Markov Chain.

• Pick θ′ 6= θ such that

π(θ′)q(θ′ → θ)

π(θ)q(θ → θ′)
≤ 1, i.e. a(θ, θ′) = min

(
1,
π(θ′)q(θ′ → θ)

π(θ)q(θ → θ′)

)
≤ 1
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Why it works?

• Let r(θ → θ′) be the transition pdf of the Markov Chain.

• Pick θ′ 6= θ such that

π(θ′)q(θ′ → θ)

π(θ)q(θ → θ′)
≤ 1, i.e. a(θ, θ′) = min

(
1,
π(θ′)q(θ′ → θ)

π(θ)q(θ → θ′)

)
≤ 1

Then:
f (θ|D)r(θ → θ′) = f (θ|D)q(θ → θ′)P (D|θ′)a(θ, θ′)
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Practical version: ABC -methods

Marjoram, Molitor, Plagnol y Tavare 2003 PNAS 100:15324-15328

1. Now in θ

2. Propose a change to θ′ according to q(θ → θ′)

3. Generate D′ using θ′

4. If ρ(D′, D) ≤ ε go to the next step, else, return θ

5. Calculate

a(θ, θ′) = min

(
1,
π(θ′)q(θ′ → θ)

π(θ)q(θ → θ′)

)
6. Accept θ′ with probability a(θ, θ′), else return θ

Obs come from f (θ|ρ(D′|D) ≤ ε). Variants: If S is a sufficient statistic, use: 4. If

ρ(S ′, S) ≤ ε go to next step. How do we find an approximately sufficient statistic? See

Beaumont et al 2002 Genetics 162:20025-2-35, Joyce and Marjoram 2008.
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General conclusions and future directions

• A suite of methods for classical complete inference is now available for complex biological

problems that are modeled using hierarchical statistical models.

• Note that the emphasis of the statistical Data Cloning method was shifted from a

‘point-estimation-only method’ to solving important biological questions via model

selection, LRT, profile likelihood !!!

• The choice between Bayesian and frequentist approaches is not a matter of feasibility or

convenience but rather can and should be based on the philosophical foundations of

statistical inference preferred by the investigator.

• Using Data Cloning to test for parameter identifiability (as diagnostic tool)!
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