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Example: a continuous time stochastic SIS model

SIS ODE model: a s
— = —5(I —ql
T = NoUte—yg

S = N — I = # of susceptibles, N = total pop. size (cst.)

[ is the contact rate,

e =import of infection from an external source (e = 0 if pop. is isolated)
g = recovery rate

Analogous to Levins 1969 metapopulation model (Hosts are empty (S) or occupied(])).



Example: a continuous time stochastic SIS model

SIS ODE model: a s
— = —5(I —ql
T = NoUte—yg

S = N — I = # of susceptibles, N = total pop. size (cst.)

[ is the contact rate,

e =import of infection from an external source (e = 0 if pop. is isolated)

g = recovery rate

Analogous to Levins 1969 metapopulation model (Hosts are empty (S) or occupied(])).

Stochastic version: the statesare I =0,1,... ., N. Att =0, I[(0) =k. So P(I(0)=k) =1
and

P(I(t) = i) = pi(t) = P(I() = 8| X (0) = k).



Kolmogorov-Forward equation

If the process is in state ¢ at time ¢, then at time ¢ + At it will be either at state 7 + 1,2 — 1 or
i (At chosen so that at most 1 event occur). Therefore,

pilt+ A1) = pa(D(AY) [FSOUE) + )] + i) ADgI(1)

pilt) |1 = (ADFSOI(E) + ) + (1))

Hence

pltAO-pO) gy () [%S(t)([(t) +e)] +pin(t)(A)gI(t)

—pilt) | #S(OI(E) +€) + g1(1)]
and since S = N — I Vt, and letting At — 0 we get

dp;(t) 5
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The transition rates matrix ()

In vector notation,

dp;it) — pi—l(t)%(N — i+ D) —14+¢€)+pia(t)gli + 1) — pi(t) %(N —i)(i+€)+ gt

becomes Cfl—lt) = pQ, where dim(p) =1 x (N + 1) and dim(Q) = (N +1) x (N +1):



The transition rates matrix ()

In vector notation,

dpi (t)
dt

_ pi_l(t)%(]\f i D)= 146+ pra(t)gli+ 1) — pilt) %(N — )it e+ gi

becomes CCIZ—I; = pQ, where dim(p) =1 x (N + 1) and dim(Q) = (N +1) x (N +1):

[ —Be pe 0 0
g - [EV-DA+g+g] FIN-1(+e 0
o2y ~ AV =22+ +29] FIN-2)2+¢)
° =10 0 3¢ —[%(N—3)(3+e)+3g]
0 0 4g




The transition rates matrix ()

In vector notation,

dpi (t)
dt

_ pi_l(t)%(]\f i D)= 146+ pra(t)gli+ 1) — pilt) %(N — )it e+ gi

becomes Cfl—lt) = pQ, where dim(p) =1 x (N + 1) and dim(Q) = (N +1) x (N +1):

[ —Be pe 0 0
g - [EV-DA+g+g] FIN-1(+e 0
o2y ~ AV =22+ +29] FIN-2)2+¢)
° =10 0 3¢ —[%(N—3)(3+e)+3g]
0 0 4g

Solution to the system of ODEs: if p(0) = po, then py = po exp{Qt}



Observing a realization of the process

e Observations at times ¢; <ty < ... <t,1 <t, Let ; =t;, —t;_; as before.

e States: i1,%2,...,%5-1,1
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The likelihood function



The likelihood function



The likelihood function

P(I(t1) = i1) x P(I(ts) = d2lI(t1) = i1) x P(I(tg) = 1q|I(tg-1) = tg-1)

- {ptl}il X {eXp((tQ - tl)Q)}iLZé X {eXp((tB - t2)Q)}i2,i3 X



The likelihood function

= P(I(t)) = 0) X P(I(t2) = is|I(t1) = 11) X P(I(ty) = ig|(tg-1) = ig-1)
- {ptl}h X {eXp((tQ - tl)Q)}iMQ X {eXp((t3 - t2)Q)}z’2,z’3 X
= {Pt, }i; X HZ:Q{QXP(TkQ)}%—Mk



The likelihood function

L) = P(I(t) = ix, I(ts) = n, ..., I(ty1) = ig_1, I(t,) = i,)
= P(I(t) = i1) x P(I(ts) = ia|I(t1) = i1) X P(I(ty) = ig [(ty1) = iy1)
= {pPe, i x {exp((ta = 01)Q) Yiry X {exp((ts — £2)Q) }igiy X - -
= {pu i X [Tio{exp(m@)}iy 1,

= {Ptsti X Hz:Q{IikA X exp(74@Q) }i,, where

I, is a vector that has zeros everywhere, except in the 5t position where it has a 1.



The likelihood function

L(O) = PUI(t) = ir, I(ty) =ia, ... I(ty_1) = ig_1, I(t,) = iy)
= P(I(t) =i1) x P(I(ts) = is| I(t1) = i1) x P(I(t,) = iglI(ty_1) = iy_1)
= {pesfiy X {exp((te = 12)@Q) Firip X {exp((ts — 12)Q) iy X - -
= {pt}i X [Tioofexp((tr — ti-1)@) }ir 1

= {pt1}i1 X Hz:Q{IikA X eXp(Tk‘Q)}ik? where
I, is a vector that has zeros everywhere, except in the 5t position where it has a 1.
Notes:Computing exp(7()) can be done using a matrix exponentiation algorithm (only once
per each iteration of the maximization routine if all 7;'s are equal). However, can greatly reduce
computations by calculating I; exp(7() (a vector) instead of exp(7()) (a matrix). These are
the so-called Krylov space methods. (Citation: On 19 dubious ways. . .)



Matrix exponentiation

A matrix exponentiation is achieved using a T.S. expansion:

7_2

3
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eXp(TQ):I—i—TQ—FgQQ—i—yQ?’—i—...



Matrix exponentiation

A matrix exponentiation is achieved using a T.S. expansion:

2

3
exp(7Q) =1+ 7Q + %QQ - %Q?’ +
Hence

Liexp(1Q) = LI+ L7Q + 1, 'Q2+I Q3

]3'



Matrix exponentiation
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3
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]3'

e However this is definitely NOT the way to compute it because of accumulation of numerical
round-off errors!



Matrix exponentiation
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e However this is definitely NOT the way to compute it because of accumulation of numerical
round-off errors!

e A program to simulate and estimate parameters for this model using R will be reviewed in
the computer session in the afternoon.

e About simulation: with certain computer intensive methods for parameter estimation, all

we need is to simulate realizations from the process conditioned on the ending point. To do
that, use Hobolth and Stone (2009), Annals of Applied Statistics).



Matrix exponentiation

A matrix exponentiation is achieved using a T.S. expansion:

™, T 3
exp(7Q) =1+ 7Q + EQ - ?Q +
Hence

Liexp(7Q) = LI+ LirQ +1; Q2 + 1 Q3

]3'

e However this is definitely NOT the way to compute it because of accumulation of numerical
round-off errors!

e A program to simulate and estimate parameters for this model using R will be reviewed in
the computer session in the afternoon.

e About simulation: with certain computer intensive methods for parameter estimation, all

we need is to simulate realizations from the process conditioned on the ending point. To do
that, use Hobolth and Stone (2009), Annals of Applied Statistics).

e Sampling error?



SDE’s I: a heuristic introduction using the Wright-Fisher
model

e Let X (k) = be the number of A; individuals in generation k, for a (constant) population
size N: XV (k)

e Thestatesare S=0,1,..., N

e 0 and NN can be absorbing states, depending on the biological scenario (i.e. no mutation,
no selection)

e The number of A;'s for next generation follows a Binomial law (sampling with
replacement):

pig = PO+ 1) =100 =) = ()=

e No mutation and no selection: p;, = %
e Two-way mutation: p; = ﬁ(l — f12) + (1 — %) 21

(14s)i
1+s)i+(N—1)

e With selection and without mutation: p; = (



Approximating the discrete process with a continuous
time, continuous state MC

Recall that a diffusion process X; satisfies:

1. limyyos 1 E[X i, — X Xy = 2] = p(z)
drift parameter

2. limy, o+ tE[(Xin — X0)?| Xy = 2] = 0*()

diffusion parameter

3. limy s tE[(Xpn — X)Xy = 2] =0
needed for continuity of trajectories

Brownian Motion satisfies:

1. continuous trajectories

2. independent increments: B;, — By, indep. of By, — B,,, 0 < 51 <11 < 59 < 1y,
3. Normal increments: B; — By ~ N(0,t — s), s < t

4. Drift: 1 = 0. Diffusion: o°(x) = 1.



Why ‘drift’ and ‘diffusion’ parameters?

1
hlg& EE[XHh — X¢| Xy = x] = p(x) then
E| X — Xe| Xy = 2] ~ p(xz)h  (h small)

That is, when the process is in x, it changes an amount of u(z)h in the next h units of time.
V&T(Xt+h — Xt‘Xt = .CC)

= E[(Xpan — X)X = 2] — (B[Xppn — X4 | X = 2])°

~ o*(x)h — pu(x)*h* =~ o*(z)h
where o%(z) is the infinitesimal variance of the diffusion. It tells us how much does the process
tends to move when at x.



Construction of diffusions

If B; denotes B.M., then X; = aB; + bt is a diffusion process such that:

1. limp_ o4 %E[XHh — X| Xy =] =plz) =0
is the drift parameter

2. limyp 04 %E[(XHh — Xy)?1X; = 2] = 0%(v) = a?
is the diffusion parameter

3. satisfies the condition of continuity.

Differential notation: d.X; = adB; + bdt. In general:

dXt = ,UJ(Xt)dt + v/ O'Q(Xt)dBt,

/ /
X, — Xy = / u(Xs)ds —|—/ o(Xs)dBs.
0 0



Construction of diffusions

Approximating a family of Markov Chains in discrete time:
XY(k), k=0,1,2,...

Define: YV, = ﬁXN([Nt]) ... as the scaled process.

|dea: accelerate time by a factor N and scale space by a factor ﬁ

With the adequate scaling, lim;_, . YtN =Y,, a limiting diffusion.
With the proper scaling, all of these processes look the same when IV is large. Hence, a single

limiting diffusion process approximates all the scaled Markov chains. It's like the CLT! For the
W-F model, the scaling is i/a(IN) = i/N, the fraction of A;'s is a natural scaling
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limy 00 VY = Y

When does the approximation work? Let h = 1/N. If, as N — oo and i/a(/N) — x we have
that:

L B, — VY = ] - (o)
2. 1/1NE[(Y T YV = a(N )] — 0%(2),
3. 1/1NE[(Y L Y)Y = a(é\/)] — 0.

N

For the W-F model using the scaling i/a(N) = i/N:

e drift p(x) = 0 (neutral case)

e diffusion 0*(x) = x(1 — ). This comes from the “binomial sampling noise” due to finite
population size.

A little warning: the diffusion term is called “genetic drift” in population genetics



Drift calculation for the neutral WF diffusion

Knowing that (X ([Nt] + 1)| X ([/Vt]) = i) ~ Bin(N, p; = i/N) we get

i X(IN(tR)])  X(NE) | X(IN
E th%_ytNthN:ﬂ _ E[ N XN XN

= LE[X(Nt] +1) — i| X ([Nt]) = i

=

= §(Np; —i) = 5(Ng —i) =0, VN.

So ULNE Yti\% — YMY;Y = 4| =0 and hence p(z) = 0.



Other scenarios

With mutation probabilities 119 = % and w9 = 9% we get

e —up (1=
pz—N U12 NU21,

and the diffusion approximation has

e /i(x) = —b19x + 651(1 — x) Boundary no longer absorbing
e 0’ =1z(l—1x)

g

X and no mutation,

With fitness advantage s =

(1+s)
1+s)i+ (N —1)

Pi =
(
and

o u(z)=0x(l — 1)

e 0°=x(1—1x)



A hierarchical model using Wright-Fisher

Y|X ~ Binom (M = 50, X)

X o~ ogx0),
where
e g(x|6) is given by the transition pdf of a Wright-Fisher diffusion (which lives between [0, 1]).

e Data example: Antibiotic resistant, antibiotic sensitive bacteria, sample size at each time
step: M = 50.

e |ikelihood:
L0, 6) = / F(yIX, 8)g(x; 0)dX.



A hierarchical model using Wright-Fisher

Y|X ~ Binom (M = 50, X)

X~ g(x;0),

where

e g(x;0) is given by the product of the transition pdfs for the Wright-Fisher diffusion,
evaluated at the observed time steps (Remember that the chain lives between [0, 1]).

e Data example: Antibiotic resistant, antibiotic sensitive bacteria, sample size at each time
step: M = 50.

e Likelihood:
L0,0) = [ FO1X. 0)g(xi)dX.
e Likelihood uses:

— The transition pdf of the diffusion process or

— the stationary density, if it exists (and data at stationarity)



L(0.6) = [ f(y|X, d)g(x: 6)dX.

g(x;0) is the product of the transition pdfs, just as in the continuous MC case.



= | J(¥IX, ¢)g(x:0)dX.

g(x;0) is the product of the transition pdfs, just as in the continuous MC case.

The transition pdf p;(x, 2; 0) satisfies the Kolmogorov-Forward equation

%pt(l‘, 2’ 0) = A*pi(x,2'; 0), where A*acts on 2’ and



= | J(¥IX, ¢)g(x:0)dX.

g(x;0) is the product of the transition pdfs, just as in the continuous MC case.

The transition pdf p;(x, 2; 0) satisfies the Kolmogorov-Forward equation

%pt(l‘, 2’ 0) = A*pi(x,2'; 0), where A*acts on 2’ and

0 1 0

%[M(ﬂf/)pt(%, 33'/; 9)] + 5(933/2[

Apy(z, a5 0) = — (2" )pi(w, ', 0)].



= | J(¥IX, ¢)g(x:0)dX.

g(x;0) is the product of the transition pdfs, just as in the continuous MC case.

The transition pdf p;(x, 2; 0) satisfies the Kolmogorov-Forward equation

%pt(l‘, 2’ 0) = A*pi(x,2'; 0), where A*acts on 2’ and

0 1 0

g @ el " O] + 57 o™ (@ )pile, 2" 0))

Under certain conditions, lim; . pi(x, 2) = w(2) exists. If this limit exists and 7(2) is a

Apy(z, 2’ 0) = —

probability density, i.e.

m(z) > O,/ m(z)dz = 1, then this is the stationary density and

©¢)



= | J(¥IX, ¢)g(x:0)dX.

g(x;0) is the product of the transition pdfs, just as in the continuous MC case.

The transition pdf p;(x, 2; 0) satisfies the Kolmogorov-Forward equation

%pt(ﬂﬁ, 2’ 0) = A*py(z,2'; 0), where A*acts on 2’ and

0 1 0?

a3 25 O] + S5 o (el 2 6)

Under certain conditions, lim; . p¢(x, 2) = w(2) exists. If this limit exists and 7(z) is a

Apy(z, 2, 0) = —

probability density, i.e.

m(z) > O,/ m(z)dz = 1, then this is the stationary density and

9]

limy oo P*(Xy € E) = [, m(2)dzand

limyeo B f(Xy) = O f(2)m(2)dz



= | J(¥IX, ¢)g(x:0)dX.

g(x;0) is the product of the transition pdfs, just as in the continuous MC case.

The transition pdf p;(x, x'; 0) satisfies the Kolmogorov-Forward equation

%pt(fﬁ, 2’ 0) = A*py(z,2'; 0), where A*acts on 2’ and

0 1 0

A, 5 0)] + 5l 7' )

Under certain conditions, lim;_,~, p¢(, 2) = m(z) exists. If this limit exists and 7(z) is a
probability density, i.e.

Apy(z, 2" 0) = —

m(z) > 0,/ m(z)dz = 1, then this is the stationary density and

o0

limy oo P*(X; € E) = [, 7(2)dzand

limy 00 B f(X3) = [T f(z)m(2)dz
7(2) satisfies A*m(z) = 0 (Letting ¢ — oo in the forward equation)



Writing the likelihood

Observations: o, Y1, %2, ..., Y, at times 0 < t; <ty < ... <1,

These are samples with error taken from a particular realization of the process:
Lo, L1, L2, ...,Ty

250 Sampling from a SDE model for the syncytial respiratory virus

200

150

100f

50F

Reported Infecteds (dots/line) vs. SDE trajectory (line)

Time (in days)



Writing the likelihood Il

L6, 6) = / F(yIX. 8)g(x: )dX.



Writing the likelihood Il

L6, 6) = / F(yIX. 8)g(x: )dX.

Again, let 7y =t — 0,7 =ty — 11, ..., 7, =, — t4—1. Then,
q q
g9(x;0) = pri(fl?z'—hﬂ?z'; 0) = Hpri(xi‘xi—l; 0).
i=1 i=1
This is identical to the likelihood function without sampling error. Brauman (1983) shows ML

estimation for equal time intervals, without sampling error. With sampling error, we have to
integrate the statistical sampling model over all the possible realizations of the process

q q
L(0) :/---/Hf(yz’«fz')Hpn(fﬂﬂxz—h@)d%d@.--dwq
i=0 i=0



Writing the likelihood Il

L6, 6) = / F(yIX. 8)g(x: )dX.

Again, let 7y =t — 0,7 =ty — 11, ..., 7, =, — t4—1. Then,

q q
Q(X; 6) = Hpn(xi—ly Ly, 9) = HpTi(xi\azi_l; 9).
=1 i=1

This is identical to the likelihood function without sampling error. Brauman (1983) shows ML
estimation for equal time intervals, without sampling error. With sampling error, we have to
integrate the statistical sampling model over all the possible realizations of the process

L(0) :// Hf(yz’%)Hpn(%|$z—1;9) dridzs . .. dx,
i=0

1=0

\ >4

Only need to be able to Wﬁge this down to run MCMC



Tier and Hanson 1982: Branching processes

Let Z, be the total pop. size at time n and B; be the offspring distribution such that
p;(2) = P(B; = j|Z, = z). Let also

E|B)|Z, =z = h(z)
VIBi|Z, = z] = v(2)
{ Zns1 = Z@Z:n1 Bi (a randomly stopped sum)
Then
EAZ,\Z, = 2] = El(Zpy1 — Zn)|Zn = 2] = ED . (Bi|Z,=z)] — z = z[h(z) — 1] and

E((AZ)|Zn = 2] = E[(Zn1 — Z0)*|Zn = 2] = Var [(32(BilZ, = 2)) — 7]

HEIC (Bl Z, = 2) — 2]}

= 20(z) + {z(h(z) — 1)}



Diffusion approximation

E[AZn‘Zn = Z] - Z[h(Z) - 1]7
E[(AZy)*Z, = 2] = 2v(z) + {2(h(2) — 1)}’

e Scaled process: X(t) = % where L is “some reference population size”

e Scaled time: t = nAt, where At << 1 is the generation time.



Diffusion approximation

EIAZ,|Z, =z2] = zlh(z) —1],
E((AZ,)Z, = 2] = zv(2) + {2(h(2) — 1)}
e Scaled process: X(t) = % where L is “some reference population size”

e Scaled time: t = nAt, where At << 1 is the generation time.

e Require: small changes in X (¢) occur in small time increments At (offspring mean close to
replacement):
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E((AZ,)Z, = 2] = zv(2) + {2(h(2) — 1)}
e Scaled process: X(t) = % where L is “some reference population size”

e Scaled time: t = nAt, where At << 1 is the generation time.

e Require: small changes in X (¢) occur in small time increments At (offspring mean close to
replacement):

h(z)=1+du (%) , where § = (At) measures deviations from replacement and



Diffusion approximation

E[AZn‘Zn = Z] - Z[h(Z) - 1]7
E[(AZy)*Z, = 2] = 2v(z) + {2(h(2) — 1)}’

e Scaled process: X(t) = % where L is “some reference population size"
e Scaled time: t = nAt, where At << 1 is the generation time.

e Require: small changes in X (¢) occur in small time increments At (offspring mean close to
replacement):

h(z)=1+du (%) , where § = (At) measures deviations from replacement and

x
px) =r (1 — E) is the per-capita growth rate of the logistic equation.



Diffusion approximation

EIAZ,|Z, =z2] = zlh(z) —1],
E((AZ,)Z, = 2] = zv(2) + {2(h(2) — 1)}
e Scaled process: X(t) = % where L is “some reference population size”

e Scaled time: t = nAt, where At << 1 is the generation time.

e Require: small changes in X (¢) occur in small time increments At (offspring mean close to
replacement):

h(z)=1+du (%) , where § = (At) measures deviations from replacement and

x
px) =r (1 — E) is the per-capita growth rate of the logistic equation.

e Finally, denote v(z) = d(5). Then, asAt — Oand 7 —



Diffusion approximation: let At — 0Oand 7 — z

AEAXWX(1) =a] = &b | eyt




Diffusion approximation: let At — 0Oand 7 — z

AEAXW[X(1) =a] = LB |t

X(0)= 3] = & (hz) ~ 1

Ik

= & (60 (7)) = aule) =0 (19



Diffusion approximation: let At — 0Oand 7 — z

A EIAX (1) X(t) = ]

A EIAX ()X (1) = 2]

_ 1 (Zn+1—2n)
LB [y

L

26 (pu(x))? + 5 (At)ad(x) — xd(x) = 25 (for example)



Diffusion approximation: let At — 0Oand 7 — z

LEAX®)X(t) =a] =

~E[(AX(4)AX () =2] =

1 (Znt1—2%n)
b [—“L

26 (pu(x))? + 5 (At)ad(x) — xd(x) = 25 (for example)

and finally AlitriloitE[(AX(t))j\X(t) 2] = O[(AL2Y, > 2



BP in random environments (Ludwig 1976, Keiding
1976)

W,, = Random environmental fluctuations at time n such that E(W,) = 0and V(W,,) =1, W,
indep. of Z,,, m < n.
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pj(z,w) - P(Bz = ]|Zn = ZaWn = w)
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indep. of Z,,, m < n. Then, the offspring distribution is defined as
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Again, h(z,w) and v(z,w) are the conditional mean and variance of the offspring distribution.
Assume that



BP in random environments (Ludwig 1976, Keiding
1976)

W,, = Random environmental fluctuations at time n such that E(W,) = 0and V(W,,) =1, W,
indep. of Z,,, m < n. Then, the offspring distribution is defined as
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Again, h(z,w) and v(z,w) are the conditional mean and variance of the offspring distribution.
Assume that

e Elv|Z, = z] = E|E|Z, = z,W,]| = d (%) , which is the expected value of the variance

of the offspring distribution over the environmental process: demographic stochasticity.



BP in random environments (Ludwig 1976, Keiding
1976)

W,, = Random environmental fluctuations at time n such that E(W,) = 0and V(W,,) =1, W,
indep. of Z,,, m < n. Then, the offspring distribution is defined as

pj(z,w) - P(Bz = ]|Zn = ZaWn = w)

Again, h(z,w) and v(z,w) are the conditional mean and variance of the offspring distribution.
Assume that

e Elv|Z, = z] = E|E|Z, = z,W,]| = d (%) , which is the expected value of the variance

of the offspring distribution over the environmental process: demographic stochasticity.

o hiz,w)=1+0u (%) + 4/ 0e (%)w, where At = § = %, and the fluctuations due to the

environment are of order v/§ (a sum of a large number of iid random variables).
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Diffusion approximation of a BPRE (Ludwig 1976,
Keiding 1976)

Following the above conditions we get that

limarso HEIAX (O|X () =a] = wplz) = ar (1-§)

limaiso 5 E[(AX (6)2X(8) = 2] = zd(z) + 2e(x) = 26 + 2*a

e 13 = Expected value of the variance of the offspring distribution: on average, how much
does the offspring distribution varies.

e 2’0 = the variance of the expected value of the offspring distribution: how much does the

mean of the offspring distribution changes over time

e References: Ludwig 1976, Keiding 1976, Braumann 1983 a,b, Dennis and Patil 1984,
Dennis 1989, Goel and Richter-Dyn 1974, Turelli 1977 (random environment and stochastic
calculus), Ethier and Kurtz 1986, Tier and Hanson 1982, Dennis 2002 (Allee effects with

environmental and demographic fluctuations)



The likelihood for the logistic SDE with environmental
stochasticity

Dennis 1989: shows an approximation to the time-dependent transition distribution using
matching moments from a gamma distribution. The moments came from an approximation to
the Backward equation using singular perturbation methods. Wiesak (1988, PhD U of Idaho,
Math Dept.) gave a rigorous justification for this approximation. The time dependent transition
is then used to write down the likelihood function without sampling error.



The likelihood for the logistic SDE with environmental
stochasticity

Dennis 1989: shows an approximation to the time-dependent transition distribution using
matching moments from a gamma distribution. The moments came from an approximation to
the Backward equation using singular perturbation methods. Wiesak (1988, PhD U of Idaho,
Math Dept.) gave a rigorous justification for this approximation. The time dependent transition
is then used to write down the likelihood function without sampling error.

And with sampling error? We need to review some basic concepts first.



Brief review: Bayesian statistics
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What is bayesianism? The subjectivist point of view

What is meant by a statement such as “the probability that this coin will land heads up is %7

e The most common interpretation is that the long run frequency of heads approaches %

e Bayesians who make this statement mean that their prior opinion is such that they would as
soon guess heads or tails.

e Consider a game in which if the event A occurs, the bayesian will be paid 1 $. Then, P(A)
is the amount of money he would be willing to pay to buy into the game.

e This concept of probability is personal: P(A) may vary from person to person.
e For bayesians, probability is a model for quantifying the strength of personal opinions.

e In bayesian inference, evidence is collected that is meant to be consistent or inconsistent
with a given hypothesis and

e as evidence accumulates, the degree of belief in a hypothesis ought to change.

e With enough evidence, it should become very high or very low.
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Bayesian inference

e uses a numerical estimate of the degree of belief in a hypothesis before evidence has been
observed and

e calculates a numerical estimate of the degree of belief in the hypothesis after evidence has
been observed.

e This process is repeated when additional evidence is obtained.

e Bayesian inference usually relies on degrees of belief, or subjective probabilities in the
induction process.

Suppose the prior prob. of A is P(A). Upon observing event C, the opinion about A changes
to P(A|C):

P(AandC) P(C|A)P(A)
PAICI =5 =~ P(0)
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Bayesian inference: the posterior distribution

P(AandC)  P(C|A)P(A)
PO =50y = PO

e Bayesian's prior opinion about the value of 6 is given by a density g(6).

e Having observed the data X = x, where X has density function f(x|f), the new opinion

about 0 is
~ J(x]0)g(0)
h(0]x) = T rxl0)g0)d8 ™ f(x]0)g(0)

e Note that: the tool for making inference, the posterior distribution h(x|6) is defined in

terms of the degree of belief about 6.

e Sample space probabilities are no longer used, hypothetical repetitions of a random process
are no longer considered.

e Deciding between competing hypotheses in light of data reduces to compute their posterior
probabilities.
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An example: Binomial survival

Suppose we follow the fate of n individuals during a single time interval. Let X = number of
survivors be binomially distributed:

flalp) = (7)o -

Now, in the absence of previous information we may postulate that the prior distribution of p is
uniform:

gp)=1, 0<p<L
Suppose n = 20 and x = 5. The posterior distribution is

hiple) x Felplgte) = (7)o - o

This posterior distribution represents the new opinion of a Bayesian who was initially indifferent
to the value of p after observing 5 survivals in 20 trials.



Posterior distribution for binomial survival:

Posterior density
0.10 0.15 0.20
| | |

0.05
|

0.00
|

0.0 0.2 0.4 0.6 0.8 1.0

The uniform prior expresses an indifference about the possible values of p, which is modified
after the experiment.
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Quantifying prior beliefs using a beta distribution

Using a prior beta distribution for p we get:

g(p) o< p" (1 = p)"~!

and the posterior distribution of p given z is:

h(plz) o f(z]p)g(p) = (Z) p(L—p)" p" (1 —p) o p™ (L —p)yrt

a new beta distribution with parameters ¢’ = a + x and b’ = b + n — x. Note that

/

__ a _ _a
Mprior = a+b whereas Mpost = J U

_a—l—x_a—kb(a)_'_nf

 atbtn  at+b+n\a+d a+b+n"""

where T = x/n is the sample mean.
The posterior mean is a weighted average of the prior mean and the sample mean!

As n grows large, x/n approaches true py value and ,,s approaches py (and var. goes to 0).
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Bayesian inference for more ‘realistic’ problems:

e Suppose that at time ¢, the survival probability x; is drawn from a stochastic process X;(0)
that lives between 0 and 1.

e Furthermore, let us suppose that the form of distribution of X;(#) depends only on the
previous realization X; 1(0) = x;_1 (X¢(0) is a Markov process that you do not observe).

e Researcher interested in the per unit of time survival probability

e At each time step, take a random sample of n; individuals from the population at large,
t =0,...,k and record their fate during one time unit (e.g.: one-year olds survival).

e Data: pairs (n07 yO)) (nlv yl)a SRR (nk7 yk)
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Stochastic time-varying survival

Unobserved Markov process X;(0) = f(X:-1(0))

Observations (Y|X = x) ~ Binom (n, x)

t=0,1,2,...,k. The vector of unobserved trajectory of the survival process is X;.
This defines a State-Space model or Hidden-Markov process
The likelihood of a single replicated time series of observations is
L) = [ PIYIX)g(X:0)aX.

where g(X; ) is the joint distribution of a trajectory X of the Markov Chain, starting at Xj.



Hierarchical models in Ecology

Y ~ f(yI X, ¢)
X ~ g(x]0)

it is known that the likelihood is
L0.6) = [ F(yIX. Glglxi6)dX.
A few examples include:

e Stochastic population models with added observation error (De Valpine and Hastings 2002,
Clark and Bjornstad 2004, Newman et al. 2006, Dennis et al 2006)

e Stochastic models of species abundance distributions (Etienne and OIff 2005)

e Capture-recapture models with uncertain capture probabilities (George and Robert 1992)
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Non-linear, non-Gaussian SSM

Y ~ f(ylX, ¢)
X ~ g(x]0)

it is known that the likelihood is
L0.0) = [ F(yIX. Glglx:)dX.

e Maximum likelihood was known to be very difficult for these models.

e Bayesian solutions to the study of hierarchical population models were much easier to
implement.

e However, it can be very difficult to specify non-informative priors to do “objective bayesian
statistics” for hierarchical models (Nancy Reid, Mexico, 2008):

— Bayesian hierarchical Poisson models, (Gelman et al 2007)

— Heinrich 2005, Proceedings of Phystat05 (Poisson (es + b), s of interest, additional
Poisson measurements of b and ¢)

— Bayesian probit regression (Jones 2008, Siddhartha and Chib 1984)



The Bayesian solution |

e Circumvents the problem of high dimensional integration
e Assumes (0, ¢) are random variables.
e Also assume that X are unknown and random

e Uses Bayes's rule and MCMC to sample from:

fyIX, ¢)g(x|0)7 (6, ¢)
J F(y1X, ¢)g(x|6)7 (6, ¢)dXdfdd

m(0, ¢, X]y) =

e The marginal posterior distribution 7(6, ¢|y) is obtained by integrating the above posterior
over X
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The Bayesian solution ||

Markov Chain Monte Carlo algorithms yield B independent samples from 7 (6, ¢, X|y):

The marginal posterior distribution 7(6, ¢|y) is simply obtained by discarding the X from
(60 gl X015

=1
leaving

{0, 0B |

and no integration is needed. The mean values and variances of 7(6, ¢|y) are simply the mean
values and variances of

{0, 6} 2,
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The Metropolis Hastings algorithm

Purpose: to draw samples from a pdf 7(z).How? By implementing four steps:

1. If in x initially, propose a move from z to y from g(z — y).

2. Calculate the Hastings ratio:

m(y)aly — :v))

a(x,y) = min (1, p —

3. Accept the move with probability a(x,y). Else, return x.

4. Repeat many times.

The process of generating x's from those steps is a Markov Chain whose stationary pdf is
guaranteed to be 7(x). So all you have to do is wait long enough to get the desired samples.



When is M-H. useful?

e When there’s no closed expression for m(z), yet the ratio 7(z)/7(y) has a closed expression.

e Example: our bayesian posterior:

X @)exl)m(6, )
0.6 XIY) = TRIIX. 09 x10) (6, 0 dX b

and

(0,0, Xly)  f(yIX, 9)g(x]|0)7(0, )

w0, ¢\ X y)  fy|X, ¢")g(x'|0)m (6", &)
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e Let r(x — y) be the transition pdf of the Markov chain generated by M-H.
e Pick y # x such that

m(y)qly — )
m(z)q(r — y)
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m(y)aly — fv)) <

I, ie a(z,y)=min (1’ m(x)q(z = y)

Then:
m(x)r(z —=y) =  w(x)q(r — y)a(z,y)

m(y)qly — )
m(z)g(r — y)

= 7(z)q(z — y)

= m(y)qly — )



Why it works? -Some informal heuristics. . .

e Let r(x — y) be the transition pdf of the Markov chain generated by M-H.
e Pick y # x such that

m(y)qly — )
m(z)q(r — y)

IA

1, ie a(z,y)=min (1, m(y)aly = 33%) <1

Then:
m(z)r(z —y) = m(z)q(r — y)a(x,y)

= 7m(y)qy — x)a(y, x), since a(x,y) <1=aly,z)=1



Why it works? -Some informal heuristics. . .

e Let 7(z — y) be the transition pdf of the Markov chain generated by M-H.

e Pick y # x such that
m(y)aly — )

. _ i (1 T Waly — @)
eSSt e ety =min (1. 7HIET ) <1
Then:
T(z)r(r —y) = m(z)g(r — y)a(z,y)
m(y)aly — )

= m(y)aly — )
= 7(y)q(y — x)a(y, x), since a(z,y) <1=a(y,z)=1

= m(y)r(y — x), which is the detailed balance equation.



The data cloning method heuristics (Lele et al. 2007) -
Robert (1993):

Recall that for the general model

Y ~ f(y|X,¢)
X ~ g(x|0)

the likelihood is

L6, ¢) = / F(yIX, )g(x10)dX

and

(0, oly) = 1 f(Y\X,ab)i((j)@)dX} (0, ¢)

where

h(y) = / F(y1X, 6)9(x(0)(6, 6)dXddo.



The data cloning method heuristics (Lele et al. 2007) -
Robert (1993):

Substitute original posterior back again as a prior and keep doing that:

[ 1(y1X.0)g(x|0)dX } (1) (0,0)
7T<2)(6>¢b’) = Ly z(Q)(y) )

{J F(y1X.0)g(xI0)aX } '(60.0)
2 (y)

and continuing in this fashion:




The data cloning method heuristics (Lele et al. 2007):

Let (0, $) be such that L(0, ¢:y) > L(6, ¢;y) for all (6, ¢). (MLE def.) Given that 7(6, ¢) is

positive everywhere on the parameter space, as k grows large

n90.6ly) _ [LO.y)) { 0 i (0,6) # (0,9)
700, dly) [L(gjgg;y)r Lif (6,¢)=(0,9)

A A

e That is, the fixed point for the iterated map is a degenerate distribution at (6, ¢) and
independent of the initial distribution .

e Fact: the mean of a degenerate distribution is the point at which it degenerates.

e So the mean of the k" posterior distribution for large enough & approaches the MLE of
(6, ¢).
e Finally, Lele’s result: as k — oo, 7%)(0, ¢|y) converges to a MV N([6, 9]/, %[‘%é,gﬁ)),

A

where I(6, g%) is the Fisher information matrix from the original likelihood function

regardless of (0, ¢).



Testing Data Cloning: stochastic population growth

The Stochastic Gompertz Model (Dennis et al. 2006):
Ny= Ny qexpla+bln Ny 1+ 07 where Z; ~ iidN(0,1)
and Y, =InN,+F, where F, ~ iidN(0,7?)
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Testing Data Cloning: The stochastic Gompertz model
with closed-form likelihood

Nt _ Nt_le[(a+bln(Nt_1)+0Et]

Let x; = In(n;) and take ¢ = b+ 1, then we have a first-order autoregressive process
(Reddingius, 1971, Dennis and Taper 1994):

Xt = Xt—l +a+ bXt_l + Et
= a-+ CXt_l + Et

Density independence is expressed through b = 0 or ¢ = 1. For |c| < 1 the stationary
distribution exists and:

E[Xs] = lim E[X)] = —

t—00 — C

2
Var[Xy] = lim Var[X;] =

t—00 — 02




Stochastic Gompertz with observation error (Dennis et
al 20006):

e Let Y; be the estimated logarithmic population abundance, such that:

Y, = X, + F
= CL+CXt_1+Et+Ft
= a+c(Yio1 — Fi) + By + F,
where F; ~ N(0, 7).

e The Markov property is lost: it is an ARMA model (Autorregresive Moving Average
process).

e There is extra info. in the autocorrelation structure about o2 and 72.

e The ML parameter estimates are obtained via the Kalman filter (lots of conditioning) or

using MVN:



The Multivariate Normal model:

No observation error: we have a series of recorded observations
Loy, L1y Tyg-

Assuming X arises from the stationary distribution, the joint pdf of Xy, X;,... X, = X has

the following distribution:
X ~ MVN(pu, )

where
/1 c . cq\
5 c 1 ¢ ...t
o 9 9
> = c C 1 ...
1 —c2 :
\cq =1 12 c )
and
— a 1
:Lb_l_c.la

j being a (¢ + 1) x 1 vector of ones.



The Multivariate Normal model:

With observation error: given the observations,yy, y1, . . . y,, the joint pdf of Y, Y7,... Y, is
multivariate normal: writing Y = X + F, we get

Y ~ MVN(y, V)

where 11 = 1], j being a (¢ + 1) x 1 vector of ones, and V = X + 7°I. The variance
covariance matrix of the process is:

[ 52 4+ 7_2 co? 22 g2 ]
1—c? 1—c? 1—c? 1—c?
co? o2 + 7_2 co? 1152
1—c? 1—c2 1—c? 1—¢2
V = 2o? co? o2 + 7_2 4252
1—c2 1—c2 1—c2 1—c?

g2 1152 12452 o2 + 7_2
| 1—c? 1—c? 1—c? 1—c? _

Therefore, the log-likelihood needed for parameter estimation is:

q+1 1 N
- SO =V y = p)

(First differences log-likelihood -REML- can also be obtained and behave nicely)

InL(a,c, 0 7°) =

1
In(27) — 51n|V| —



Testing Data Cloning: comparing with Gompertz SSM
results

Table 2 Maximum likelihood estimates (and standard errors) calculated for the parameters 4, ¢, G and 7 in the Gompertz state-space model,

using numerical maximization (first column) and data cloning with three different sets of prior distributions (second, third, fourth columns)

Parameters

ML estimates

Data cloning 1

Data cloning 2

Data cloning 3

a QN

0.3929 (0.5696)
0.7934 (0.3099)
03119 (0.2784)
0.4811 (0.1667)

0.3956 (0.5509)
0.792 (0.2999)

03132 (0.2751)
0.4802 (0.1562)

0.4136 (0.4640)
0.7821 (0.2524)
0.3217 (0.2262)
0.4768 (0.1492)

0.4103 (0.5876)
0.7839 (0.3202)
0.3207 (0.2934)
0.4764 (0.1816)

All data cloning estimates used £ = 240 clones. Data cloning 1: priors were normal(0,1), uniform(—1,1), lognormal(—0.5,10), lognormal(0,1)

[notation is normal(mean,vatiance), uniform(lower bound, upper bound), lognormal(normal mean, normal variance)]. Data cloning 2: priors
were normal(0,10 000), uniform(—1,1), lognormal(0,10 000), lognormal(0,10 000). Data cloning 3: priors were normal(3,1), uniform(—1,1),
normal(—2,100), lognormal(0,10). Data were time series abundances of American Redstart (Sezgphaga ruticilla), from a survey location in the
North American Breeding Bird Survey; numerical values appear in Table 1 of Dennis ez a/ (2006).

Lele et al. (2007)



Data Cloning continued

The method apparently

e Relies on asymptotic symmetric confidence intervals that can have coverage failures when
using small data sets and are symmetric.

e Cannot easily get likelihood function evaluated at the maximum, so cannot:

— Perform likelihood ratio tests
— Draw profile likelihoods

— Do model selection via information criteria (AlIC, BIC, ...)

So cannot answer many scientific/biological questions !!!



Three problems of interest:

1. Drawing a profile likelihood (better Cl's) seems computationally prohibitive (1 DC run + 1
MC integral at each value of the profiled parameter).

A

2. If DC does not yield the value of the maximum L(6), how do we carry model selection via

|C like AIC:

A~

L
AIC, — AICy = —2In 22 4+ 2(dy — dy) =7

Ly

3. If one posits that
Hy:0, =60, =203 orthat

H11(9175827£93.

How do we compute the ratio of integrals

phe Lol®)
Ly(01,02,05)

To answer these questions all we need is to know how to compute likelihood ratios (an example
next).
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Back to Gause’'s 1934 data:
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The latent variable model component

Let the log-population abundance be X; = In IV;. Specify a family of models of the form:
X =m(X;1)+0Z;, where Z; ~N(0,1).

Two forms of density-dependence are:

[ x+a—be" (Ricker)
m(x) = r + In(\) — In(1 + Be”) (Beverton-Holt)

The joint distribution for a single time series of log-abundances z;, 1 =0, ..., q is:
q 2
_ 2\—1/2 (xr — m(x4-1))
g(x|0) = t|:|1(27m )~ 2exp (— 53 ) :

For the Ricker model § = [abo?]' and for the B-H 6 = [\ 3 07]’.



The hierarchical model:

Sampling from well-mixed liquid cultures suggests using a Poisson sampling model:

q

fylx.¢) =[]

|
iy

e "tnyt

I

where n; = exp(z¢). The distribution f(y|x, ¢) will serve as the observation component in the
Likelihood function for three population cultures:

3
L(0y,62,05) = [ | / F(yilx;)9(x16;)dx;.
j=1



Three problems of interest:

1. Drawing a profile likelihood (better Cl's) seems computationally prohibitive (1 DC run + 1
MC integral at each value of the profiled parameter).

A

2. If DC does not yield the value of the maximum L(6), how do we carry model selection via
|C like AIC:

A

L
AIC, — AIC, = —2In il +2dy —dy) =7
2

3. If one posits that
Hy:0, =0y=035 orthat

H1:917é827493.

How do we compute the ratio of integrals

pe DO
L1(61792793)

To answer these questions all we need is to know how to compute likelihood ratios.



Likelihood ratios for data cloning:

Let (0, ¢©)) and (A1), V) be two particular sets of parameter values. To compute

L(8©, 49)

L0, gy

1. Generate m samples x(!), x(?) x(™) from the posterior of the latent variables via

MCMC (straightforward):

hixly, 60", ") o< flylx, 6)g(x[8")

g e e ey

2. Calculate the LR as:




Profile likelihood for DC:

Let 6 = [0s,0c]. To draw profile for 6, do

1. Calculate ML estimates (é, g%) using DC.

2. For 6g select an array 9(51), Qé?), ey Hg‘]) bracketing the ML estimates broadly enough.
3. For each value 9;1), 9&2), ey @g‘]) in turn, carry DC to maximize the likelihood w.r. to 6¢
getting
(105,61}, 468,62}, {05, 6})
4. Generate m samples x1, x® ... x(™ from h(x|y, 8, ®).
5. Then, for each Hg),i =1,2,...,J calculate the sample average:
L85 6. ¢ Z fy1x9, 0)g(x10, )
L6, ) Y\X $)g(x7)[)

Use a single MCMC chain + vectorized calculations this algorithm is fast!



Why the LR and PL algorithms work? (E. Thompson,
U.w., 1991)

LO.oy)
L(90,¢0},’B’) - 90 cboy fxesh x|y, 0, ¢)dx

x|y,0
7 Jees Mxly. 0, cb)XIi—@giigidx

90 ¢oy

_ L(0,0,y)h(x]y,0,0)
o fXES L(6y,00,y)h (x|§ 00,00) ( ‘Y790 ¢O)

X|0,¢
- fxESW (XIY7‘907¢0)

f(y[x,0)g(x]0)
fXGS f(yb\fx,qﬁo) (x]09) (X|Y7907¢0)

and

Z flylxY), ¢)g(x1)|0)

F(y]xU), ¢g)g(x1]6y)

from which a likelihood profile can be ea5||y computed using vectorized calculations.



Likelihood ratios for data cloning:

P. caudatum, three replicates P. caudatum, one replicate
gl °
o o
o o
= £
© ©
= =1
= —
Q Q
= =
< S
[a 8 a8
a a
P. aurelia, three replicates P. aurelia, one replicate
gl 1=}
o o
o s}
£ =
© ©
=3 =
) |
Q Q
= =
o o
= =
o o
A A

Ponciano, J.M., Taper, M.L., Dennis, B. and Lele, S.R. in prep. Inference for hierarchical models in ecology: confidence intervals, hypothesis testing and

model selection using data cloning.



Lele et al CI's vs. 95% profile likelihood intervals:

1.0

0.4 0.6

Profile likelihood relative to the maximum
0.2

0.0
!

1.8 2.0 2.2 2.4 2.6 2.8

Ponciano et al 2009 (Ecology).



Lele et al Cl’'s vs. 15% likelihood intervals: some
relevant conclusions

e For o%: if size of its variability is under estimated, the variability around the estimated
probability of crossing a critical pop. threshold is under-estimated!!

o LRT for
H01(91:62=Q3 VS.

H1:017é827é93

fails to reject Hj so Gause's replicates likely arose under the same process.

e The stochastic Beverton-Holt model (2) explains the data better than the stochastic Ricker
model (1) because

A

L
AIC, — AICy = —21n il +2(dy — dy) = 3.7337,
2

thus a particular form of density-dependence seems to explain the data the best (scramble
vs. contest intra-specific competition). Model selection process does NOT stop here!



Other current computer intensive methods

. Filtering: sequential factorization of the likelihood (Newman et al 2009)

. Gride-based methods (Kitagawa 1987, de Valpine and Hastings 2002) using numerical
integration methods

. Sequential Monte Carlo methods (Particle Filtering), Newman et al 2009, Liu 2001,
Thomas et al 2005)

. Importance sampling (E. Thompson 1994, UW, genetics of pedigrees, Donnelly, Nordborg
and Joyce 2001 -Genetics- the coalescent process)

. Monte Carlo Expectation Maximization (EM) algorithm (Liu 2001)

. Iterated Filtering methodology: “plug-and-play” inference (lonides, Breto and King 2006,
Breto et al 2009), examples with SDE's.



Simulating Markov Chains and carrying inference

e |s there a way to take advantage of the ease with which simulations are done to carry
statistical inference?



Simulating Markov Chains and carrying inference

e |s there a way to take advantage of the ease with which simulations are done to carry
statistical inference?

e Yes, according to the so-called “Likelihood-free” inference methods (in a bit).



Simulating Markov Chains and carrying inference

e |s there a way to take advantage of the ease with which simulations are done to carry
statistical inference?

e Yes, according to the so-called “Likelihood-free” inference methods (in a bit).

e Regardless of the method, don't try to pool a big Hidden-Markov model into a big,
computer intensive bag!!

o ALWAYS seek ways to diagnose the inference methods and results, try to keep it simple!!.



MCMC without likelihoods

Marjoram, Molitor, Plagnol y Tavare 2003 PNAS 100:15324-15328. Objective: sampling from
f(0|D) o< P(D|0)m(0)

1. Now in 6

2. Propose a change to ¢’ according to ¢(6 — ¢')

3. Generate D' using ¢’

4. 1f D' = D, go to next step, else return 6

5. Calculate

a(6,0') = min (1, m(0")g(t — 9))

m(0)q(0 — 0)
6. Accept 0" with probability a(6,6’), else return 6

Repeat until obtaining many (independent) samples from the posterior f(6|D).



Why it works?

e Let (0 — 0') be the transition pdf of the Markov Chain.

e Pick ¢’ # 6 such that

0 > 0) _ (0 0
iy <t e o0 = (LIGEET) <o




Why it works?

e Let (0 — 0') be the transition pdf of the Markov Chain.

e Pick ¢’ # 6 such that

0 > 0) _ (0 0
iy <t e o0 = (LIGEET) <o

Then:
fOID)r(0 — 6") = f(0|D)q(0 — 6")P(D|0")a(0,6)



Why it works?

e Let (0 — 0') be the transition pdf of the Markov Chain.

e Pick ¢’ # 6 such that

w0l =) _ (@00 6)
iy <t e o0 = (LIGEET) <o

Then:
fOID)r(0 — 6") = f(0|D)q(0 — 6")P(D|0")a(0,6)
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= POERO(0 — 0)P(D]g) i)



Why it works?

e Let (0 — 0') be the transition pdf of the Markov Chain.

e Pick ¢’ # 6 such that

w0l =) _ (@00 6)
iy <t e o0 = (LIGEET) <o

Then:
fOID)r(0 — 6") = f(0|D)q(0 — 6")P(D|0")a(0,6)

P(D|0)r (0 7(0")q(0'—0
= POERO(0 — 0)P(D]g) i)
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Why it works?

e Let (0 — 0') be the transition pdf of the Markov Chain.

e Pick ¢’ # 6 such that

w0l =) _ (@00 6)
iy <t e o0 = (LIGEET) <o

Then:
fOID)r(0 — 6") = f(0|D)q(0 — 6")P(D|0")a(0,6)

P(D|0)r (0 7(0")q(0'—0
= POERO(0 — 0)P(D]g) i)

= M g0 — 0)P(D|6)

= f(#'|D)g(¢" = 0)P(D|0)a(",0)



Why it works?

e Let (6 — @) be the transition pdf of the Markov Chain.
e Pick ' # 0 such that

m(6)q(0" — ) . A —in (1. 040" — 0)
m(0)q(0 — 0") <L e alf )= (1’ m(0)q(0 — 9’)) =1

Then:
fFO|D)r(0 — 0) = f(0|D)q(0 — 0")P(D|6")a(6,6)

0)m(0
= P(l;|(1)))( )Q(e — 0")P(DI|0' ) ((99—_3?))

= BB (0" — 0)P(D]0)
= [(0'|D)q(0" — 0)P(D|0)a(0', 0)

= f(¢'[D)r(¢" —0)



Practical version: ABC -methods

Marjoram, Molitor, Plagnol y Tavare 2003 PNAS 100:15324-15328

1. Now in 6

2. Propose a change to 6’ according to q(6 — 0')

3. Generate D' using ¢’

4. If p(D', D) < € go to the next step, else, return 6

5. Calculate

a(0,0') = min (1 (0")q(0' — 9))

" m(0)q(0 — 0")
6. Accept ¢ with probability a(6,6’), else return 6
Obs come from f(0|p(D'|D) < €). Variants: If S is a sufficient statistic, use: 4. If

p(S’,S) < € go to next step. How do we find an approximately sufficient statistic? See
Beaumont et al 2002 Genetics 162:20025-2-35, Joyce and Marjoram 2008.



General conclusions and future directions

e A suite of methods for classical complete inference is now available for complex biological
problems that are modeled using hierarchical statistical models.

e Note that the emphasis of the statistical Data Cloning method was shifted from a
‘point-estimation-only method’ to solving important biological questions via model
selection, LRT, profile likelihood !!!

e The choice between Bayesian and frequentist approaches is not a matter of feasibility or
convenience but rather can and should be based on the philosophical foundations of
statistical inference preferred by the investigator.

e Using Data Cloning to test for parameter identifiability (as diagnostic tool)!



How To Gather
Fleas from a
Grizzly Bear

How to get fleas from
a grizzly bear might puz-
zle a less resourceful man
than' Walt Sutter of Ta-
coma, Wash. Fromaradio
program he learned that
a wealthy Englishwoman
was in the market for
grizzly-bear fleas, to com-
plete a collection taken
from various wild ani-
mals. So he went to a
zoo with a long-nozzled
vacuum cleaner, and soon
the coveted specimens
were in the bag, ready
for a purchaser.

Walt Sutter harvesting grizzly-bear fleas to sell to a flea collector






