
Project On Stochastic Differential Equations: Persis-

tence Time Calculations For Biological Systems

In this project, persistence times or exit times for several biological problems are studied
computationally. A computer code, written in MATLAB, is given that performs exit time
calculations for two-species biological systems such as predator-prey and competition sys-
tems. In the MATLAB program, the Euler-Maruyama method is used to solve the stochastic
differential equation (SDE) model for many sample paths. In the computations for each sam-
ple path, the population sizes start at specified initial levels. The calculations continue until
either population size is less than unity or a specified maximum time is reached. Then, the
exit time and the persisting species are recorded for that sample path. Described below are
five different biological systems that are to be studied in this project. First, the MATLAB
program is listed along with the output for a certain competition system.

MATLAB Program

The MATLAB program is called projsdeNIMBioS.m or projsdeNIMBioS.mat and is listed
below. For many two-species biological systems, only nine statements may have to modified.
These statements are indicated with a %***.

% A program for exit calculations for NIMBioS
% The Euler-Maruyama method is used for solving the SDEs
% nsamp sample paths are calculated
% The proportion exiting up to time t are calculated
% Exits occur when either population size is less than 1
% y1 and y2 are the two populations (different species)
% b1,d1,b2,d2 are the per capita birth and death rates
% y10 y20 are the initial population sizes
% Problem-dependent statements are marked with a %*** (9 statements)
% Accuracy generally increases as h decreases
% icase=1 corresponds to the deterministic problem and so nsamp=1
clf
clear
for icase=1:2
clear tt
clear yp1
clear yp2
nsamp=1000; %***
tmax=100; %***
nt=1000; %***
y10=15; %***
y20=15; %***
if(icase==1) nsamp=1; end
h=tmax/nt;
hs=sqrt(h);
randn(’state’,2); %initiates the random number generator
te1=zeros(nsamp,1);
te2=zeros(nsamp,1);
te3=zeros(nsamp,1);
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jj1=0;
jj2=0;
jj3=0;
for jj=1:nsamp

y1=y10;
y2=y20;
yp1(1)=y1;
yp2(1)=y2;
r=randn(nt+1,2);
nchk1=0;
nchk2=0;
n=0;
t=0;
chk=0;
tt(1)=0;
while (chk==0)
n=n+1;
t=t+h;
if(jj==nsamp) tt(n+1)=t; end
b1=.84; %***
d1=.40+.01*y1+.022*y2; %***
b2=.90; %***
d2=.75+.0067*y2+.005*y1; %***
f1=b1*y1-d1*y1;
f2=b2*y2-d2*y2;
g1=sqrt(b1*y1+d1*y1);
g2=sqrt(b2*y2+d2*y2);
if(icase==1) g1=0; end
if(icase==1) g2=0; end
y1=y1+h*f1+hs*g1*r(n,1);
y2=y2+h*f2+hs*g2*r(n,2);
if(jj==nsamp) yp1(n+1)=y1; end
if(jj==nsamp) yp2(n+1)=y2; end

% This is Euler’s approximation to the SDE
if (y1 < 1)

chk=1;
jj1=jj1+1;
te1(jj1)=t;

end
if (y2 < 1)

chk=1;
jj2=jj2+1;
te2(jj2)=t;

end
if (t > tmax)

chk=1;
jj3=jj3+1;
te3(jj3)=t;
chk=1;

end
end % end of while (chk==0) loop
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end % end of for jj=1:nsamp loop
tp=0; tp1=0; tp2=0; tp3=0;
if(jj1 ~= 0) tp1=sum(te1)/jj1; end
if(jj2 ~= 0) tp2=sum(te2)/jj2; end
if(jj3 ~=0)tp3=sum(te3)/jj3;end
if(jj1+jj2~=0)tp=(sum(te1)+sum(te2))/(jj1+jj2); end
p1=jj1/nsamp;
p2=jj2/nsamp;
p3=jj3/nsamp;
% tp1 and tp2 are mean exit times for populations 1 and 2
% tp3 is mean time for sample paths not exiting
% tp is mean exit time for paths that exit
% p1, p2 are proportions exiting for populations 1 and 2
% p3 is proportion not exiting in time tmax
disp(’ ’)
if(icase==1) disp(’ Deterministic Calculational Results’); end
if(icase==2) disp(’ Stochastic Calculation Results’); end

disp(’ icase nsamp h tmax’)
disp((sprintf(’ %12.0f %12.0f %12.5f %12.2f’,icase,nsamp,h,tmax)));
disp(’ tp1 p1’)
disp((sprintf(’ %12.6f %12.6f’, tp1, p1)));
disp(’ tp2 p2’)
disp((sprintf(’ %12.6f %12.6f’, tp2, p2)));
disp(’ tp3 p3’)
disp((sprintf(’ %12.6f %12.6f’, tp3, p3)));
disp(’ tp p1+p2’)
disp((sprintf(’ %12.6f %12.6f’, tp, p1+p2)));

subplot(2,2,2*icase-1)
set(gca,’fontsize’,18,’linewidth’,1.5);
plot(yp1,yp2,’k-’)
xlabel(’Pop. y1’)
ylabel(’Pop. y2’)
if(icase==1) title(’Deterministic’); end
%if(icase==2) title(’Stochastic’); end
hold on
subplot(2,2,2*icase)
set(gca,’fontsize’,18,’linewidth’,1.5);
plot(tt,yp1,’r-’,tt,yp2,’k-’)
xlabel(’Time t’)
ylabel(’Pops. 1 and 2’)
if(icase==1) title(’Deterministic’); end
%if(icase==2) title(’Stochastic’); end
hold on

end % end of for icase=1:2 loop
hold off

The biological system studied in the above MATLAB program is a two-species competi-
tion model with per capita birth and death rates given by:

b1 = .84, d1 = .40 + .01y1(t) + .022y2(t), b2 = .90, d2 = .75 + .0067y2(t) + .005y1(t).
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The resulting deterministic model is:

dy1(t)

dt
= (b1(t)− d1(t))y1(t) = .44y1(t)− .01y2

1(t)− .022y1(t)y2(t)

dy2(t)

dt
= (b2(t)− d2(t))y2(t) = .15y2(t)− .0067y2

2(t)− .005y1(t)y2(t)

with y1(0) = y2(0) = 15. The corresponding SDE model is:

dy1(t)

dt
= (b1(t)− d1(t))y1(t) +

√
(b1(t) + d1(t))y1(t)

dW1(t)

dt

dy2(t)

dt
= (b2(t)− d2(t))y2(t) +

√
(b2(t) + d2(t))y2(t)

dW2(t)

dt

with y1(0) = y2(0) = 15 and W1(t) and W2(t) are two independent Wiener processes. The
SDE model is solved numerically using the Euler-Maruyama method:

y1,k+1 = (b1,k − d1,k)y1,kh +
√

(b1,k + d1,k)y1,kh η1,k

y2,k+1 = (b2,k − d2,k)y2,kh +
√

(b2,k + d2,k)y2,kh η2,k

for k = 0, 1, 2, . . . until either y1,k+1 or y2,k+1 is less than unity or time tmax is exceeded.
This is performed for nsamp sample paths. The parameter h=tmax/nt is the time step in
the method. The output of this program is listed below.

Deterministic Calculational Results
icase nsamp h tmax

1 1 0.10000 100.00
tp1 p1

0.000000 0.000000
tp2 p2

87.100000 1.000000
tp3 p3

0.000000 0.000000
tp p1+p2

87.100000 1.000000

Stochastic Calculation Results
icase nsamp h tmax

2 1000 0.10000 100.00
tp1 p1

11.346606 0.442000
tp2 p2

13.081541 0.558000
tp3 p3

0.000000 0.000000
tp p1+p2

12.314700 1.000000
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The calculational results indicate that for the deterministic model, the first species always
out-competes the second species and the time it takes for the second species to have a
population less than unity is 87.1. For the stochastic model, the second species out-competes
the first species about 44% of the time. The average time to extinction for a species is 12.3.
The figure shows the calculational results of the deterministic model and one sample path
of the stochastic model.
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Figure 1: Calculational Results For The Deterministic And Stochastic Models For A Com-
petition System
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Project Outline and Systems To Study

A. Introduction

(1) In this project, it is helpful to have some understanding of the MATLAB program. Please
read through the program and get a feel for what the program is doing.

(2) There are nine statements that depend on the biological system and the problem. These
statements are marked with a %***. You should locate these statements and understand
the meanings of the different parameters.

B. Competition System 1

In this part, you study the system described in the above MATLAB program. The following
questions should be answered. These questions will help you understand the program.

(Question 1) For the deterministic results, what does it mean if p1=1 or p2=1?

(Question 2) Consider the stochastic results. What does it mean if p1=.442 and p2=.558
for 1000 sample paths?

(Question 3) Suppose that p3 is not equal to 0? What does this mean? Try changing tmax
to tmax=20 and run the program again. What happens?

(Question 4) Reset tmax=100 but try nt=20. Examine tp for the new case. Do you think
that the results are more accurate when nt is made larger?

(Question 5) Set b1=.80 rather than b1=.84. (First reset nt to 1000 and tmax to 100.)
What happens? Are the results different than when b1=.84? What does this tell us about
the sensitivity of competition to the parameter values?

C. Competition System 2

The second system to study is another competition system where the per capita birth and
death rates are:

b1 = .45, d1 = .4 + .02y1(t) + .01y2(t), b2 = .6, d2 = .5 + .01y2(t) + .02y1(t).

Several questions that should be answered about this system are:

(Question 1) For this biological system, can you write down the deterministic and stochastic

systems? For example, if
dy1

dt
= a+ by1 + cy2 + ry1y2 + sy2

1 +uy2
2 +v

dW1(t)

dt
+ z

dW2(t)

dt
, what

are a, b, c, r, s, u, v, and z?

(Question 2) For the deterministic model, which system persists? For the stochastic model,
what proportions of populations 1 and 2 persist?
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(Question 3) Change b2 to b2=.50. What happens? Are the results sensitive to the values of
the parameters? What does this tell us about competition of species in a varying environment
where the parameters depend on position?

D. Predator-Prey System

The third system to study is a predator-prey system where per capita birth and death rates
are:

b1 = .5, d1 = .05y2(t), b2 = .2 + .01y1(t), d2 = .4.

The initial population sizes are: y10=40 and y20=5. Also, for this problem, set tmax=90
and nt=3000. Several questions that should be answered about this system are:

(Question 1) Write down the deterministic system of differential equations. By inspecting
the equations, can you tell that the first population is the prey and second population is the
predator? For the deterministic model, which system persists? For the stochastic model,
what proportions of populations 1 and 2 persist?

(Question 2) Why are the results of the stochastic model so different from those of the
deterministic model?

E. SIS Epidemic System

The fourth system models an epidemic consisting of susceptible and infected sub-populations
where recovery and infection rates are, respectively,

γy2 and αy1y2

where γ = .1 and α = .001. The initial population sizes are: y10=120 and y20=5. Set
tmax=500, nt=5000, and nsamp=100. The susceptible population size is y1 and the infected
population size is y2. As the sub-populations in this biological system are the same species,
the stochastic model does not fit into the general model of two interacting species as assumed
in the program. It can be shown that the stochastic SIS model has the form:

dy1(t)

dt
= (γy2(t)− αy1(t)y2(t)) +

√
γy2(t) + αy1(t)y2(t)

dW1(t)

dt

dy2(t)

dt
= (−γy2(t) + αy1(t)y2(t))−

√
γy2(t) + αy1(t)y2(t)

dW1(t)

dt

with only one Wiener process W1(t) appearing in the system. (In the deterministic SIS
model, the last term in each equation of the above system is not present.) To study this
system using the computer program, the statement y2=y2+h*f2+hs*g2*r(n,2) needs to be
modified to y2=y2+h*f2+hs*g2*r(n,1) where, of course, appropriate statements need to be
included for f1, f2, g1, and g2. In particular,

f1 = γy2 − αy1y2, g1 =
√

γy2 + αy1y2, f2 = −γy2 + αy1y2, g2 = −√γy2 + αy1y2.

Several questions that should be answered about this system are:
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(Question 1) Show, by examining the equations, that for this problem, y1(t) + y2(t) =
y1(0) + y2(0) for all t > 0 for either the deterministic or stochastic model. Determine for the
deterministic model, what the populations y1(t) and y2(t) approach as t →∞.

(Question 2) What happens in the calculations? Why do the results of the stochastic model
differ from those of the deterministic model? Try tmax=100 and nt= 1000. Explain what
happens.

F. Choose a Population System

The final biological system is one of your choosing. Remember, though, the MATLAB
program, as set up, assumes that the two species are different. Use the program to study
persistence of your biological system.
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