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Introduction:

= Need to understand parallel programming
paradigms in HPC.

= Need to understand computer architecture and
its implication on parallel computing models.

» Choose the right tool for time consuming tasks
depending on the type of application as well as
the available hardware.



Multicore computing
Cluster computing
GPU computing

Reconfigurable computing with FPGA
Vector processors

Distributed computing

And many others...



R provides high level abstractions.
R provides dynamics libraries and packages.
R provides modularization.

R provides mixing of programing paradigms.
You can write multicore, cluster and GPGPU
accelerated applications in R.



= Multiple processors
which share one global
memory(RAM)

= Bus interconnect

* Threaded programs

= Communication via
shared variables

= Easy to program

= SMPs are Commonplace
because of multicore CPUs.

= Example: Nautilus

Reference: http://www.nics.tennessee.edu/computing-resources/nautilus
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MKL.: g o

» BLAS are standard building blocks for linear
algebra. Highly-optimized libraries exist that
can provide considerable performance gains.

= R can be built using so-called optimized Blas
such as Atlas (‘free’), Goto (not ‘free’), or
those from Intel or AMD; see the 'R Admin’
manual for more information.

= Requires NO(very trivial) changes to serial
code.

* Yet delivers good performance.



MKL exam

export MKL NUM THREADS=8
export MKI DYNAMIC=FALSE

its = 2500
dim = 1750
X = matrix(rnorm(its*dim),its, dim)

system.time({C=matrix(0, dim, dim);for(i in 1l:its)C = C + (X[i,]
%0% X[1i,])}) # single thread breakup calculation

system.time({Cl = t(X) %$*% X}) # single thread - BLAS matrix
mult

system.time({C2 = crossprod(X)})# single thread - BLAS matrix
mult

print(all.equal(C,C1,C2))



MKL result

(1) user system elapsed
74.540 7.628 83.274

(2) wuser system elapsed
using $*%
2.316 0.092 2.410

(3) user system elapsed
using crossprod
1.280 0.016 1.300

(4) user system elapsed
with 8 threads using %*%

2.188 0.020 0.367

(5) user system elapsed

# single thread breakup calculation

# single thread - BLAS matrix mult

# single thread - BLAS matrix mult

# multithreaded- BLAS matrix mult

# multithreaded- BLAS matrix mult

with 8 threads using crossprod

1.500 0.020 0.189



MKL benchme

Creation, transp.., deformation of a 2500*2500 matrix 1.15 1.05 1.12 1.05 1.05 1.07 1.11 1.05
2400*2400 normal distributed random matrix # 1000 0.54 0.52 0.52 0.52 0.52 0.52 0.52 0.52
Sorting of 7,000,000 random values 1.37 1.37 1.37 1.37 1.36 1.37 1.37 1.37
2800* 2800 cross-product matrix (b=a’ * a) 3.81 3.83 2.13 1.42 1.33 1.68 1.75 2.69
Linea regression over a 3000*3000 matrix (c = a\b’) 1.61 1.88 0.89 0.61 0.49 0.53 0.87 1.30
——————————— Trimmed geom. Mean 1.37 1.39 1.11 0.96 0.90 0.92 1.09 1.23
FFT over 2,400,000 random values 1.00 0.97 1.00 0.98 0.99 0.98 0.99 0.99
Eigen values of a 640*640 random matrix 0.89 1.81 0.96 0.91 1.01 0.98 1.17 1.30
Determinant of a 2500*2500 random matrix 1.51 1.78 0.95 0.59 0.55 0.35 0.42 0.30
Cholesky decomposition of a 3000*3000 matrix 1.42 1.64 0.75 0.52 0.42 0.38 0.46 0.58
Inverse of a 1600*1600 random matrix 1.29 1.65 0.90 0.64 0.29 0.62 0.71 3.80
——————————— Trimmed geom. Mean 1.22 1.69 0.94 0.70 0.61 0.61 0.69 0.91
3,500,000 Fibonacci numbers calculation (vector calc) 1.05 1.02 1.03 1.03 1.28 1.03 1.26 1.40
Creation of a 3000*3000 Hilbert matrix (matrix calc) 0.76 0.74 0.74 0.78 1.21 0.78 1.21 1.47
Grand common divisors of 400,000 pairs (recursion) 2.82 2.77 2.79 2.79 5.17 2.79 5.18 6.85
Creation of a 500*500 Toeplitz matrix (loops) 1.08 1.06 1.08 1.09 1.26 1.07 1.26 1.39
Escoufier’ s method on a 45*45 matrix (mixed) 0.70 1.48 1.65 0.70 0.85 0.92 0.68 0.70

——————————— Trimmed geom. Mean 0.95 1.17 1.22 0.96 1.25 1.00 1.24 1.42



pnmath:

W

It uses the OpenMP parallel processing difeoves
for implicit parallelism.

Loading the package replaces the built-in math
functions by the parallel versions. At load time a
calibration is carried out to determine the parallel
overhead.

It implements parallelized versions of most of the
non-RNG routines in the math library.

Requires NO(very trivial) changes to serial code.

Can use OMP_NUM_THREADS environment
variable to set number of threads.



pnmath exe

= Achieved speedup up to 650x.

>library(pnmath)
>tl<-system.time(sqrt(m))[3] # m is a vector
>t2<-system.time(exp(m))[3]
>t3<-system.time(gtukey(m,2,3))[3]
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» foreach: provides a method similar to for-loops for
executing R expressions sequentially or in parallel.

>library(foreach)

>foreach(i=1:10) %dopar% sample(c("H", "T"),
10000, replace=TRUE)

Warning message:

executing %dopar% sequentially: no parallel backend registered

» Must register a parallel backend to manage the
parallel execution of the loop.

= Backend: doMC, doMPIl, doSNOW, doSMP



doMC and multicore: |

m“ N

= doMC: parallel multicore back end for use with
the foreach package.

= multicore: provides a way of running parallel
computation in R on machines with multiple
cores or CPUs.

» mclapply: parallelized version of lapply.

» parallel: evaluates an expression asynchronously
In a separate process.

» pvec: parallelizes the execution of a function on
vector elements by splitting the vector and submitting
each part to one core.




foreach an

R

library(foreach)
library(doMC)
registerDoMC (cores=4)

#
>
>
>

\Y

system.time(foreach(i=1:10)

user system elapsed
4.796 0.448 5.245

> system.time(foreach(i=1:10)
(10000000)))

user system elapsed
4.332 0.609 1.459

$do% sum(runif(10000000)))

$dopar$ sum(runif



* Natural candidate for automatic parallelization.

List Result
fn

fn

fn

fn

Function

fn

fn

fn

= Examples: multicore(mclapply),
Rmpi (plapply)



mclapply e>

# R

>library(multicore)

>multicore:::detectCores|()

>options(cores = 8)

>getOption( 'cores’)

>test <- lapply(l:10,function(x) rnorm(10000))

>system.time(x <- lapply(test,function(x) loess.smooth

(X,X)))

user system elapsed
0.664 0.176 1.407

>system.time(x <- mclapply(test, function(x) loess.smooth

(xX,%X)))

user system elapsed
0.008 0.008 0.351



Cluster computing: .
I ——
» Distributed memory

» Ethernet connect, Infiband connect
= Better scalability

» Message passing interface

= Example: Kraken

‘ A

Reference: http://www.nics.tennessee.edu/computing-resources/kraken



= Rmpi provides interface to MPI APls.

*» Ris required at each compute node.

= Supports many MPI standard functions.

* Require Parallel programming knowledge.

Master process @

Memory
Memory Memory Memory Memory

Worker processes



Rmpl exa

# Load the R MPI package if it is not already loaded.
if (!is.loaded("mpi initialize"))

library("Rmpi”)
}
# Spawn as many slaves as possible
mpi.spawn.Rslaves()

# In case R exits unexpectedly, have it automatically clean up
# resources taken up by Rmpi (slaves, memory, etc...)
.Last <- function(){
if (is.loaded("mpi_ initialize")){
if (mpi.comm.size(l) > 0){
print("Please use mpi.close.Rslaves() to close slaves.”)
mpi.close.Rslaves/()
}
print("Please use mpi.quit() to quit R")
.Call("mpi finalize”)

}



Rmpl exa

# Tell all slaves to return a message identifying
themselves

mpi.remote.exec(paste("I am",mpi.comm.rank
(),"of" ,mpi.comm.size()))

#mpli.remote.exec() actually is sending a message to every
slave asking it to execute the given code, and each child
is sending a message back to the master with the result.

# Tell all slaves to close down, and exit the program
mpi.close.Rslaves()
mpi.quit()



Rmpl exa

>mpi.spawn.Rslaves()

master
slavel
slave?2
slave3

># Tell all slaves to print out a message identifying themselves
>mpi.remote.exec(paste("I am",mpi.comm.rank(),"of",mpi.comm.size()))
$slavel

[1]

Sslave?2

[1]

[1]

Sslave4

[1]

"I am
"T am
Sslave3

"I am

"T am

(rank O,
(rank 1,
(rank 2,
(rank 3,

3 of

comm
comm
comm
comm

1 of 8”

2 of 8”

8"

4 of 8"

1)
1)
1)
1)

size
size
size
size

o 00 00 00

is
is
is
is

running
running
running
running

on:
on:
on:
on:

nautilus
nautilus
nautilus
nautilus



GPU computing:
» Special-purpose coprocessor for graphics
application.

= GPU architecture are specialized for computer
iIntensive, highly-parallel computation, and
therefore are designed such that more resources
are devoted to data processing than caching and
flow control.

= Shared memory, typically 100s of core.
= CUDA and OpenCL programming models.



GPU arch

itecture :

A -
B

Reference: http://nvidia.com
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GPU memorny

» GPU has much more aggressive memory
subsystem.

Block (O, 0) Block (1, 0)

Reference: http://nvidia.com



gputools:

W

= |t provides R interfaces to handful common
statistical algorithms.

* Implemented using mixture of CUDA language,
CUBLAS library and CULA library.

» |t contains many other functions: Hierarchical
clustering, SVM training, SVD, Least-squares fit,
iInear modeling etc...

= Less-communicative algorithms seeing
speedups over 20x on data set of moderate size
(e.g. Hierarchical cluster >20x).

= Speedup factors vary with CPU, memory
configurations and, of course, GPU.




>library(gputools)

>matA <- matrix(runif(3*2), 3, 2)

>matB <- matrix(runif(3*4), 3, 4)

>gpuCrossprod(matA, matB) # Perform Matrix Cross-product
with a GPU

>numVectors <- 5

>dimension <- 10

>Vectors <- matrix(runif (numVectors*dimension),
>numVectors, dimension)

>gpuDist (Vectors, "euclidean")
>gpuDist(Vectors, "maximum")

>gpuDist(Vectors, "manhattan")

>gpuDist (Vectors, "minkowski", 4)
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R limitation and bigmemory: %

R is a memory bound language.

» 32 bit integer indexing limit.

Multi-gigabyte data sets often frustrate R users.
bigmemory, biganalytics, bigalgebra, bigtabulate
Implement massive matrices and support
manipulation and exploration.

The data structures may be allocated to shared
memory, allowing separate processes on the same
computer share access to single copy of the date set.

The data structures may also be file-backend allowing
users to easily manage and analyze data sets larger
than available RAM and share them across nodes of
a cluster.



bigmemory and other pa

W

bigmemory: supports the creation, manipulation
and storage of large matrices.

bigalgebra: provides linear algebra functionality
with large matrices.

biganalytics: extends the functionality of
bigmemory.

bigtabulate: supports table(), split() and tapply()
like functionality for large matrices.

foreach + bigmemory: a winning combination for
massive data concurrent programming.



The framework
supports the splitting of
data.

Outputs of the map
functions are passed to
the reduce functions.

The framework sorts
the inputs to a
particular reduce
function based on the
intermediate keys
before passing them to
the reduce function.

An additional step may
be necessary to
combine all the results
of the reduce functions.



Map Reduce:

= MAP step: The master node takes the input,
chops it up into smaller sub-problems, and
distributes those to worker nodes. A worker node
may do this again in turn, leading to a multi-level
tree structure. The worker node processes that
smaller problem, and passes the answer back to
its master node.

» REDUCE step: The master node then takes the
answers to all the sub-problems and combines
them in some way to get the output - the answer
to the problem it was originally trying to solve.



mapRedL{ce:

P - Tl

* mapReduce is an algorithm provides a simple
framework for parallel computations. This
Implementation provides (a) a pure R
Implementation (b) a syntax following the
mapReduce paper and (c) flexible and
parallelizable back end.

» MapReduce is a framework for processing huge
datasets on a large number of computers
(cluster, grid or cloud)

* Nothing more than apply(map(data),
reduce)



Recap pare

» MKL/pnmath
= foreach, doMC
= multicore

= Rmpi
= gputools

= bigmemory
* mapReduce




= Rcpp: facilitates the integration of R and C++.
» All R types are supported.
» The mapping of data types works in both directions.

* inline: provides functionality to dynamically define
R functions and S4 methods with in-lined C, C++
and Fortran.

» cfunction:inline C, C++, Fortran function calls from
R.

» Help to improve the performance of computational
intensive functions.



R profiling:

* Profiling a program means determining how
much execution time a program spends in
various different sections of code.

= \WWe need to know where our code spends the
time to takes to compute our tasks.

* R provides the tools for performance analysis.
> The system.time function.

> The Rprof for profiling R code.
> The Rprofmem function for profiling memory usage.

* |In addition, the profr and proftools package
on CRAN can be used to visualize Rprof data.



R profiling:

Rprof (“boot.out”)
##your code
Rprof (NULL)

##generates boot.out file

Then run > R CMD Rprof boot.out

» |t does impose small performance penalty.



R memory profill

* R has to compile with “~-enable-memory-
profiling” option.

= Difficult to use because of R garbage collector.
Memory is allocated at well-defined times in an
R program but is freed whenever the garbage
collectors happens to run.

Rprofmem(“boot.out”)
##your code

Rprofmem (NULL)
##Generates boot.out file



Working on Prof. Michael's code.

To find the MLEs for all the amino acids under a
given value.

It parallelized across genes for each amino acid.

It uses mclapply function from multicore
package.

One round robin iteration takes about 1 days.



Nested for

#Calculate the MLE of parameters under the hypergeomtric
approximation
calc_hypergeo mle mult indx <- function(mult indx signs)

{

#Starting points of parameters delta t under hypergeometric
approx.

160 iteration

for () .
{
for()
{
for ()
{

optimum <- newuoa(initial par, wrap hypergeo, aa=i,
cod pairs=cod pairs, control=list(maxfun=maxiter));

}

## single call of newuoa calls wrap hypergeo function
50-70 times.

}

} —

} Total number of calls (wrap_hypergeo)= 160 * 50-70 = ~ 8000-10000




Parallel wre

# Parallelization wrapper for hypergeometric approximation
wrap hypergeo <- function(par, aa, cod pairs, hess=FALSE)

{

stime <- system.time(tmpout <- mclapply(gindx, function(x)
{hypergeo 1llk(i=x, time=tmpetime, mut=tmpmut, aa=aa,
cod pairs=cod _pairs)}, mc.cores=Ncores, mc.presche\
dule=TRUE))

## iterates over dataset

}

2500 sequences

e lmes s

Calc_hypergeo_mle_mult_indx 72 minutes 380 minutes > 11 hours

Wrap_hypergeo (single instance 1 second 4.8 seconds 8.9 seconds
exec)



Good practices:
» Loop fission: technique attempting to break a
loop into multiple loops over the same index

range but each taking only a part of the loop's
body.

= Often it may be the case that you have a main
loop in your code, perhaps updating many
matrices.

= But, it could be that there is no interdependence
amongst the matrices you are updating.

for(variable in sequence){
ml[]=

m2[ ]=

}




= Break down large loop body into smaller ones to
achieve better utilization of locality of reference.

* This second approach can often yield a
reasonable gain in a very long, intensive loop.

» Real compilers (i.e. C, Fortran, ...) do this
automatically, but R does not.

for(variable in sequence){
ml[]=

}

For(variable in sequence){
m2[]=

}



(Good practice

» Vectorization makes loops implicit in expression.

» Replacing the loop yielded a gain of a factor of
more than 35.

> sillysum <- function(N) { s <- 0;
+ for (i in 1:N) s <- s + 1i; return(s)
}
> system.time(print(sillysum(le7)))
[1] 5e+13

user system elapsed

7.288 0.504 7.873

> system.time(print(sum(as.numeric(seq(l,1le7)))))
[1] 5e+13

user system elapsed

0.096 0.124 0.218



R-OpenMP ¢

= OpenMP
» It is a shared memory model.
> It is a Lightweight approach.
» Workload is distributed between threads.

» Supported by many compilers: GNU, Intel, IBM, NAG
and PGl.

= Translation of R functions to C/Fortran functions.

= |t will provide easy programmability to users to
use multicore architecture.



>registerDoFortan (”ifort -openmp -g -03")
>myfunc<- foreach (i=1l:n, x=double(n), y=double
(n), .combine="+") %dopar$% {y[i]<-sin(x[i])+3*cos(2*x[i])}

Then generates a fortran file containing a fortran version of
the subroutine:

subroutine myfunc (integer n, double x, double y)
double x (n), y (n)

1SOMP DO

do i=1,n

y (i)=sin (x(i))+3*cos(2*x(1i))

enddo

end subroutine

Then the fortran code is compiled on the fly and imported as a
shared

object into R:
> dyn.load(“myfunc.so”)



= Support for packages which wish to use
OpenMP.

= Byte compiler: Compiles R code to a "byte code'
representation.

» To compile all the base and recommended packages,
run make bytecode.



magma: Matrix Algebra on GPU and Multicore
Architectures.

snow: Simple networks of workstations.
http://cran.r-project.org/web/views/

HighPerformanceComputing.html by Dirk
Eddelbuettel

http://www.revolutionanalytics.com/subscriptions/
docs/RevolutionREnterprise4.0/parRman.pdf




Summary/\Wre

= |n this tutorial session, we covered
» Classes of parallel computers
» MKL, pnmath, foreach, multicore, doMC
» Rmpi
» gputools,
» bigmemory, mapReduce
» Profiling
» Rcpp and inline
» Case study
» Good practices
» R-OpenMP project
» R-2.13 new features



http://dirk.eddelbuettel.com/papers/useR2009hpcTutorial.pdf

http://www.Irz.de/services/compute/courses

http://cscads.rice.edu/workshops/summer09/slides/analysis-
visualization/nagiza-samatova-cscads-2009.pdf

http://cran.r-project.org/web/views/HighPerformanceComputing.html
by Dirk Eddelbuettel

Implicit and Explicit Parallel Computing in R by Luke Tierney

http://www.compbiome.com/2010/04/r-parallel-processing-using-
multicore.html

http://brainarray.mbni.med.umich.edu/brainarray/rgpgpu/
http://labs.google.com/papers/mapreduce.html
http://math.acadiau.ca/ACMMaC/Rmpi




Thank You !l



