Evolutionary Bioinformatics Fitting Biological Models to Genomes The Need for HPC

Michael A. Gilchrist

Dept. of Ecology & Evolutionary Biology University of Tennessee Knoxville, TN 37996

Introduction

Evolution & Biology

"Nothing in Biology Makes Sense Except in the Light of Evolution"

Dobzhansky (1973)

"Nothing in Evolution Makes Sense Except in the Light of Population Genetics"

Lynch (2007)

Introduction

Fitness Landscape

A metaphor for describing evolution

- Selection = Directed force (hill climbing)
- Drift = Undirected, diffusive effect
- Mutation = Introduces new genotypes to population on landscape

Introduction Research

General Goal

Use fundamental concepts in ecology, evolution, and cellular biology to improve interpretation of biological datasets

Specific Goal

Use mechanistic models of protein translation & evolution to extract biologically important information from genomic datasets

Current Situation

Explosion of sequenced genomes = lots of data

Genome sequencing projects statistics

Organism	Complete	Draft assembly	In progress	total
<u>Prokaryotes</u>	<u>891</u>	<u>954</u>	<u>800</u>	2645
<u>Eukaryotes</u>	22	<u>170</u>	<u>184</u>	376
<u>Animals</u>	4	<u>71</u>	74	149
<u>Plants</u>	<u>2</u>	<u>9</u>	44	55
Fungi	<u>10</u>	<u>66</u>	<u>38</u>	114
<u>Protists</u>	<u>6</u>	<u>22</u>	24	52
total:	913	1124	984	3021

Revised: May 27, 2009

http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html

Codon Redundancy & the Genetic Code

- DNA uses 4 types of nucleotides (A, T, G, & C)
- Proteins use 20 types of amino acids: (Phe, Leu, Ile, ... Gly)

Because $4^2 = 16 < 20 < 64 = 4^3$ the genetic code is redundant.

Second position								
		U	С	Α	G			
First position (5'-end)		UUU phe	UCU	UAU	UGU	U		
	U	UUC Prie	UCC ser	UAC tyr	UGC Cys	C		
		UUA	UCA "	UAA Stop	UGA Stop	A		
		UUG	UCG	UAG Stop	UGG trp	G		
		CUU leu	CCU	CAU his	CGU	U		
	С	CUC	CCC pro	CAC IIIS	CGC arg	C hira		
	_	CUA	CCA PIO	CAA gln	CGA urg	d posi		
		CUG	CCG	CAG	CGG	Third position (3'-end)		
		AUU	ACU ACC thr	AAU	AGU	US		
	А	AUC ile		AAC asn	AGC ser	C W		
	^	AUA	ACA ""	AAA _{Iys}	AGA ara	A end		
		AUG met	ACG	AAG '	AGG9	C R		
	G	GUU	GCU	GAU	GGU	U		
		GUC val	GCC ala	GAC asp	GGC gly	C		
		GUA 'U'	GCA UIU	GAA glu	GGA	А		
		GUG	GCG	GAG 9	GGG	G		

Distribution of Codon Redundancy

	-		
# Codons	# of AA		
1	2		
2	9		
3	1		
4	5		
5	0		
6	3*		

Redundancy Means Information

- Codon redundancy → codon usage can encode information
- Non-uniform codon usage implies meaningful information
- Goal: Extract this information

Second position

Glu: GAA or GAG

General Definition of Codon Bias

Non-uniform synonymous codon usage within a gene

Example: Preference for GAA over GAG in *S. cerevisiae*

Background
Implications of Codon Usage Bias (CUB)

Information Encoded in Codon Bias

If CUB is caused by some systematic processes,

then the CUB of a gene will contain information on this process.

Explanations of Codon Usage Bias (CUB)

Non-Adaptive

- Biased mutation
- Genetic drift

Adaptive

- mRNA stability
- DNA packaging
- Translational efficiency

Explanations of Codon Usage Bias (CUB)

Non-Adaptive

- Biased mutation
- Genetic drift

Adaptive

- mRNA stability
- DNA packaging
- Translational efficiency

Explaining Codon Bias: Translational Efficiency

Selection for Translational Efficiency

- Natural selection favors genes with CUB that reduce protein production costs.
- Strength of selection related to gene expression level.

Calculating the Cost of Protein Production

Direct costs

- Ribosome assembly on mRNA = 4 ATPs
- Elongation step = 4 ATPs

Calculating the Cost of Protein Production

Indirect costs

- Ribosomes are expensive to create
- Have limited lifespans

Background Explaining Codon Bias: Translational Efficiency

Ways of Increasing Translational Efficiency

Minimize ribosome wait time

Explaining Codon Bias: Translational Efficiency

Ways of Increasing Translational Efficiency

- Minimize ribosome wait time
- Minimize Pr. wrong amino acid inserted: "Missense Errors"

Ways of Increasing Translational Efficiency

- Minimize ribosome wait time
- Minimize Pr. wrong amino acid inserted: "Missense Errors"
- Minimize Pr. premature termination: "Nonsense Errors"

Ways of Increasing Translational Efficiency

- Minimize ribosome wait time
- Minimize Pr. wrong amino acid inserted: "Missense Errors"
- Minimize Pr. premature termination: "Nonsense Errors"

Linking Genotype to Phenotype

Model Assumptions

Variation in Elongation Rates: r

Let,

 r_i = Elongation rate of codon i

 \Rightarrow E(Elongation Time of codon i) = $1/r_i$

Linking Genotype to Phenotype

Model Assumptions

Problem: Elongation Rates

- Complete codon specific estimates of r do not exist for any organism.
- Goal: Estimate r_i for each codon based on genome's CUB pattern.

Linking Genotype to Phenotype Model Result

Ribosome Overhead Production Cost

Using our elongation rates we can map genotype to phenotype

$$\eta(\vec{r}) = \mathsf{E}(\mathsf{Cost} \; \mathsf{of} \; \mathsf{Protein} \; \mathsf{Production}) = q \sum_{i=1}^n \frac{1}{r_i}$$

q =Ribosome overhead cost n =Protein length

Linking Phenotype to Fitness

Protein Production Rates & Cost

- Selection favors alleles with lower production costs $\eta(\vec{c})$.
- Strength of selection increases with gene's production rate ϕ .

Energy Usage
$$|\vec{r}| = \underbrace{\eta(\vec{r})}_{\text{Production cost}} \times \underbrace{\phi}_{\text{Production cost}}$$

Linking Phenotype to Fitness

Fitness & Energy Usage

Assume fitness decreases exponentially with energy expended to meet target production rate $\boldsymbol{\phi}$

$$w = \text{Fitness}$$

 $\propto \exp\left[-q \times \eta(\vec{r}) \times \phi\right]$

Definitions

q = Scaling term

 $\eta = \mathsf{Production} \ \mathsf{cost}$

 $\vec{r} =$ Elongation rates

 $\phi = \text{Production Rate}$

Linking Fitness to Fixation Probability

Fitness and Gene Fixation

Fixation probability of a genotype \vec{r} function of

- Population size N_e
- Fitness Landscape w

• Mutation bias

Wright 1968, Sella & Hirsh (2005)

Linking Fitness to Fixation Probability

Gene Fixation and Fitness

$$\begin{split} P\left(\eta|\phi\right) &= \text{Pr}(\text{Genotype } \vec{r} \text{ fixed in population}) \\ &= \frac{\exp\left[-q \,\phi \,\eta(\vec{r}) \,N_{\text{e}}\right]}{\sum_{i \in \mathbb{C}} \exp\left[-q \,\phi \,\eta\left(\vec{r}_{i}\right) \,N_{\text{e}}\right]} \end{split}$$

 $\phi = ext{Protein production rate} \qquad q = ext{Scaling term} \ N_e = ext{Population size} \qquad \mathbb{C} = ext{Set of synonymous genotypes}$

Likelihood Function: Known ϕ s

If we have data on ϕ for multiple genes, we can estimate $\emph{r}_{\emph{i}}$ using a simple likelihood function

$$\mathsf{Lik}(\vec{r}|\vec{\phi}) = \prod_{j} \frac{\exp\left[-q \phi_{j} \eta(\vec{r}_{j}) N_{e}\right]}{\sum_{i \in \mathbb{C}} \exp\left[-q \phi \eta(\vec{r}_{i}) N_{e}\right]}$$

Likelihood Function: Known ϕ s

If we have data on ϕ for multiple genes, we can estimate $\emph{r}_{\emph{i}}$ using a simple likelihood function

$$\mathsf{Lik}(\vec{r}|\vec{\phi}) = \prod_{j} \frac{\exp\left[-q \phi_{j} \eta(\vec{r}_{j}) N_{e}\right]}{\sum_{i \in \mathbb{C}} \exp\left[-q \phi \eta(\vec{r}_{i}) N_{e}\right]}$$

Likelihood Function: Unknown ϕ

Problem: For many organisms, estimates of ϕ don't exist.

Solution: Assume prior for ϕ integrate it out.

Complex Likelihood Function

$$\mathsf{Lik}(\vec{r}|\vec{\alpha}) = \prod_{j} \int_{0}^{\phi_{\mathsf{max}}} \frac{\exp\left[-q\,\phi_{j}\,\eta(\vec{r}_{j})\,\mathsf{N}_{\mathsf{e}}\right]}{\sum_{i\in\mathbb{C}} \exp\left[-q\,\phi\,\eta\left(\vec{r}_{i}\right)\,\mathsf{N}_{\mathsf{e}}\right]} \,\pi\left(\phi|\vec{\alpha}\right) d\phi$$

where $\pi(\phi|\vec{\alpha})$ =Prior on ϕ

Gilchrist & Shah, In Prep

Likelihood Function: Unknown φ

Problem: For many organisms, estimates of ϕ don't exist.

Solution: Assume prior for ϕ integrate it out.

Gilchrist & Shah, In Prep

Likelihood Function: Unknown φ

Problem: For many organisms, estimates of ϕ don't exist.

Solution: Assume prior for ϕ integrate it out.

Gilchrist & Shah, In Prep

Likelihood Function: Unknown φ

Problem: For many organisms, estimates of ϕ don't exist.

Solution: Assume prior for ϕ integrate it out.

Gilchrist & Shah, In Prep

Likelihood Function: Unknown ϕ

New Problem: Very computationally intensive!

Run times are > 7 days, making it hard to modify

assumptions.

New Solution: HPC!

Expect to get results in hours!

Computation

- We have analytic solutions for very restricted assumptions.
- Problem is embarrassingly parallel.
- Most genes have little data so need to use many of them.
- Integration routines take most of the time.

Future Work

Model Expansion

Generalize ribosome model to include multiple costs

- Minimize ribosome wait time
- Minimize Pr. wrong amino acid inserted: "Missense Errors"
- Minimize Pr. premature termination: "Nonsense Errors"

$$\eta(\vec{c}) = \frac{\sum_{i=1}^{n+1} (\beta_{i-1} + \gamma_{i-1}(\vec{c})) \ \sigma_{i-1}(\vec{c}) \ p(c_i)}{\frac{1}{n} \left(\sum_{i=1}^{n+1} \left(\sum_{j=1}^{i-1} F(c_j)\right) \ u_{i-1} \ \sigma_{i-1}(\vec{c}) \ p(c_i)\right)}$$

Applications

Long Term Goals

Fit models to genome sequence data to get species specific

- Genome wide estimates of protein production rates.
- Estimates of codon elongation and error rates.
- Quantify the role different forces play in driving CUB.

Acknowledgements

- Premal Shah
- Russell Zaretzki
- Mike Saum
- NIMBioS
- Tennessee Science Alliance JDRD Fund