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Permafrost thaw and thermokarst as a function of disturbance S S—— Thermokarst modeling in the CESM

| investigated the effects of permafrost thaw on ecosystem C balance ===t B | am working with Dr. David Lawrence (National Center for
in arctic tundra. In collaboration with Dr. Ted Schuur (U. of Florida), s , Atmospheric Research) to incorporate permafrost thawing
we showed that land surface subsidence under permafrost thaw, oA e and thermokarst in the CESM to improve the applicability
known as thermokarst, would shift permafrost zone from previously , L of terrestrial C and N cycling within the CESM.

thought C sink to a Iarge_ C source over decadal time scales at an g el Cold region hydrology
Alaskan permafrost gradient site. |

Changes in ecosystem C balance as a result of permafrost thaw and thermokarst development Control Improved
Hydrology
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Permafrost thaw and thermokarst Belowground hydrological changes created by permafrost thaw and
stimulated permafrost C release (Lee et al. thermokarst affected C releases from the ecosystem in part by changing

2010, JGR-B). the partitioning of CO, and CH, released (Lee et al. 2012, GCB).
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o it P Drought as a function of disturbance and dryland C cycling Thermokarst parameterization within the CESM
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p dryland decomposition. The balance between these two are important

sy aW 7\ 0.0000+

B A : under current projections of drought in the desert southwest.
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In our pre-treatment of UV on litter
material and precipitation reduction at a
desert site, limiting factors (soill

RNt e TV 77 Mmoisture and N content) influenced
The degree of land surface subsidence can be N e it < R =2 more on the rate of litter decomposition = .
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used as a predictive variable to estimate v oA Es o than UV radiation exposure in the early | y. Thermokarst
variability in C release, and is closely tied to Gago0 o Ao @axN  stage of dryland litter decomposition. Schematic showing how

thermokarst (Lee et al. 2011, GCB). e thermokarst can be parameterized
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