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The tubuloglomerular feedback (TGF) system in the kidney, which is a Schematic re.pre.sentatlon.of model loop of Henle. Hydrgdynamlc. Rigid tubule: |
key regulator of filtration rate, has been shown in physiologic pressure, which is determined by the TGF response, drives flow into i 7k
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flow, and in NaCl concentration in tubular fluid of the loop of Henle. In loop flow Q(x,t), radius R(x,t), and tubular fluid chioride concentration 5 .l o]
this study, we developed a mathematical model of the TGF system that Cx.1). Macula densa T . £ 4 °
represents NaCl transport along a short loop of Henle with compliant P (t K /\ h a3 |
walls. The proximal tubule and the outer-stripe segment of the - ' “’;—;g N \1 71 | . | , , | . | f
descending limb are assumed to be highly water permeable; the thick x=0 - | | : ® Bheedoubotng R T W RE N \
ascending limb is assumed to be water impermeable and have active (%0, | | 20 . | | | | Basecase compliance:
NaCl transport. A bifurcation analysis of the TGF model equations was e EEE -l | - - 250 z
performed by deriving and finding roots of the characteristic equation, 3 ¢ : 2 = Z 200 dy, = 1.33E-5 cm/mmHg ?:
which arises from a linearization of the model equations. The analysis Intertitial E D (x) E : : % ?" 2 Oy = 2.25E-5 cm/mmHg |
revealed a complex parameter region that allows a variety of concentration 3 cr | ] 2 3 15t /5t
qualitatively different model equations: a regime having one stable, Ce(x) - =T E& : : - il 5| i:
time-independent steady-state solution; regimes having one stable 1 H,0 . 5 E B s :
oscillatory solution only; and regimes having multiple possible stable - e | | E’ T 0 |
oscillatory solutions. Model results suggest that the compliance of the 5 - = | ¥ HeR Distance along loop (mm) ;
proximal tubule, descending limb, and thick ascending limb walls Intertitial = E((E?; | | Model Results: MD [CI-] Oscillatory Behaviors Reduced compliance
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increases the tendency of the model TGF system to oscillate. P, (%) = Qx.0), S Sample solutions, based on numerical simulations using full model (1/5 of base case) |
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The tubuloglomerular feedback (TGF) system is a key regulator of Loop bend : z p =0
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have indicated that these regular oscillations are TGF- mediated and 2 Q(x,t) = —(ZnR(x,t) an % P(x,t) — D(X) = = 1. We have developed a mathematical model of the TGF system in
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large, and it the delay in TGF signal transmission at the Chloride conservation along the loop is given by: “ha S 2. The model represents a short loop of Henle. Fluid dynamics
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