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In the present study, we applied and optimization technique to the urine concen-
trating mechanism (UCM) model of the rat renal medulla [2]. We considered three
measures of UCM effectiveness:

1. The urine-to-plasma osmolality (U/P )ρ ratio that maintains a urine flow rate
within a plausible physiological range.

2. The ratio of (U/P ) to TAT (total active transport).

3. Free water absorption rate (FWA).

Using the parameter values identified by the optimization procedure, model effec-
tiveness is significantly improved above base-case, with the corresponding urine flow
rate and the concentrations of NaCL and urea, all within or near the reported expe-
rimental ranges.

The rat renal medulla model used in this work (Figure 1) is based on the central
core (CC) formulation [5] and incorporates a hypothesis for the inner medulla (IM)
UCM by Layton et al. [2].

Figure 1: Schematic diagram of central core model with six loops of Henle and
composite collecting duct. PST, proximal straight tubule, terminates at the
outer-inner stripe boundary. SDL2, terminal water-impermeable segment of a

SDL. LDL2s, the upper 40% of the IM portion of a LDL that reaches beyond the
first millimeter of the IM; LDL3, the remaining 60% which corresponds to the
aquaporin-1-null segment of the LDL; the first segment of a LDL that turns

within the first millimeter of the IM.

Model assumptions:

1. The vasculature, interstitial fluid and interstitial cells are merged into a single
compartment, the Central Core (CC).

2. The Descending Limb (DL), Ascending Limb (AL), Collecting Duct (CD) and
Central Core (CC) are represented by rigid tubules index by i = 1, 2, 3 and 4, these
are oriented along the cortico-medullary axis, which extends from x = 0 at the
cortico medullary boundary to x = L.

3. The DL, AL and CD exchange water and solute with the CC.

4. It is assumed that 38,000 loops of Henle and 7,300 CDs extend into the medulla .

5. The model is formulated for three solutes: NaCl, urea and non-reabsorbable
solute (NR) (only represented at CD) denoted by k = 1, 2, 3.

6. Loops of Henle are of different lengths and turn back at different levels along the
medulla. This configuration can be represented by means of continuously distributed
model loops.

Model equations:

The model equations are based on conservation of solute and water in the renal
medulla.

Water Conservation in a descending or ascending limb:

∂

∂x
FiV (x, y, t) = JiV (x, y, t)

Solute Conservation in a descending or ascending limb:

∂

∂t
Cik(x, y, t) =

1

Ai
(−FiV (x, y, t)

∂

∂x
Cik(x, y, t)+Jik(x, y, t)−Cik(x, y, t)JiV (x, y, t)

The water and solute conservation equations for CD and CC are obtained by
omitting the argument y and letting 0 ≤ x ≤ L. A derivation of the equations can
be found in [3] and the complete model parameters can be found in [4].

Notation: FiV (x, y, t) represents water flow rate at time t in a descending or ascending limb of a
loop of Henle reaching to level y; JiV (x, y, t): transmural water line flux; Cik(x, y, t): concentration
of solute k; Ai(x, y): the cross-sectional area of the limb; Jik(x, y, t): transmural line flux of solute
k.

Let us consider the nonlinear optimization problem:

max E(z)
s.t. zl ≤ z ≤ zu

(1)

Where E is equal to E(U/P )ρ or E(U/P )/TAT or EFWA.

(1) Urine-to-plasma osmolality ratio, (U/P )ρ:

E(U/P )ρ(z) =

{

(U/P )(z)− ρ(F3v(L; z)− FE
3v)

2 if F3v(L; z) < FE
3v

(U/P )(z)− ρ
3(F3v(L; z)− FE

3v)
2 otherwise

Where F3v(L; z) is the model urine flow, FE
3v is an experimental value of the urine

flow, ρ is the penalty scaling parameter for the urine flow. The (U/P ) ratio is given
by:

(U/P )(z) =

∑3
k=1C3k(L; z)
∑3

k=1C3k(0)

(2) Ratio of (U/P )ρ to total active transport(TAT), (U/P )/TAT : We
take into account the active transport of NaCl.

TAT (z) =

∫ L

0

(JA
1 (x; z) + JA

2 (x; z) + JA
3 (x; z))dx

Where JA
i (x; z) for i = 1, 2 denotes the aggregate active transport from distributed

tubules i at level x, given parameter values z. With this notations, model efficiency
E is given by:

E(U/P )/TAT (z) =
(U/P )ρ(z)

TAT (z)

(3) Free-water absorption rate, FWA: FWA is the hypothetical volume of
plasma, per unit time, that can be considered completely cleared of solute by the
production of urine that has a higher osmolality than blood plasma.

EFWA(z) = F3v(L; z)((U/P )ρ(z)− 1)

To solve the optimization problem (1), we use a version of the spectral projected
gradient (SPG) by Birgin et al. combined with the stepwise Newton method by
Layton [1] to evaluate the UCM effectiveness function E. The SPG algorithm needs
the function E and its gradient denoted as g, which is approximated using finite di-
fferences. Our integration of the direct problem and SPG can be described in two
steps:

SPG Algorithm:

Given the current vector of parameters z at the iteration q, P(z) is the projection
of z on the region of experimental ranges (zl, zu), αq is the spectral step, µ is the
momentum term and m0 = 0.

• Step 1. Compute the search direction:

mq = αqgq + µmq−1

dq = P (zq +mq)− zq

• 1.1 Set τ = 1, ηq =
η0
q1.1 and z+ = zq + τdq

While E(z+) ≥ max
0≤j≤min{q,M−1}

E(zq−j) + γ(z+ − zq)
tgq + ηq

Choose τnew

Set τ = τnewτ

z+ = zq + τdq

• Step 1.2
zq+1 = z+

• Step 2.- Compute the spectral step αq+1.

A selected set of model parameters were varied by ±15% relative to the corres-
ponding base-case values (see Table 1, the column labeled “Varied parameters”).
The parameter values that optimize E(U/P )ρ, E(U/P )/TAT and EFWA are exhibited
in Table 1, and simulation values in Table 2.

Optimal parameter values for:
Varied parameters Base-case E(U/P )ρ E(U/P )/TAT EFWA Range (zl, zu)
Cortico-medullary
boundary values

CD CNa+ 63.8 54.3 54.23 73.37 (54.23,73.37)
CD CNR 10 8.5 8.5 11.5 (8.5,11.5)

CD Transport
parameters
OM CD Purea 1×10−5 8.5×10−6 8.5×10−6 8.5×10−6 (85.0,1.15)×10−5

Initial IM CD Vmax,Na+ 5 5.3118 5.262 4.4 (4.4,5.6)
Late IM CD Vmax,Na+ 5 4.4 4.4 4.4 (4.4,5.6)
Initial IM CD Purea 1×10−5 8.5×10−6 8.5×10−6 8.5×10−6 (85.0,1.15)×10−5

Late IM CD Purea 80×10−5 68×10−5 68×10−5 68×10−5 (68,92)×10−5

Initial IM CD Pwater 450 382.5 382.5 517.5 ( 382.5,517.5)
Late IM CD Pwater 450 382.5 382.5 517.5 ( 382.5,517.5)
Location where CD 0.45 0.3852 0.3852 0.5175 (0.3852,0.5175)

Purea changes
Loop transport
parameters

OS TAL Vmax,Na+ 8 9.2 9.2 6.8 (6.8,9.2)
IS TAL Vmax,Na+ 17 19.55 18.11 19.55 (14.45,19.55)

Table 1: Optimization study-parameters

Most of the parameters that optimize the effectiveness functions: E(U/P )ρ,
E(U/P )/TAT and EFWA assumed optimal values at the extreme of their prescribed
ranges (Table 1).

Optimal simulation values for:
Simulation Values Base-case E(U/P )ρ E(U/P )/TAT EFWA

Urine
Osmolality (mOsm/kg H2O) 1517 2357 2192 1127
Na+ concentration (mM) 302 498 387 251
Urea concentration (mM) 780 1143 1197 601
NR concentration (mM) 222 361 347 88.3

Flow rate (nl/min/nephron) 0.0520 0.0271 0.0282 0.150
Flow rate (nl/day/animal) 5.69 2.97 3.09 16.4

CD tubular fluid values at
outer-inner medullary boundary

Osmolality (mOsm/kg H2O) 821 1152 1003 814
Na+ concentration (mM) 193 233 202 214
Urea concentration (mM) 452 713 622 402
NR concentration (mM) 29.7 35.5 30.8 33.0

Flow rate (nl/min/nephron) 0.388 0.276 0.318 0.563

Table 2: Optimization study-simulation values

For E(U/P )ρ from Table 2, the optimal parameters yielded a urine osmolality of 2357,
mOsm/kg H2O, urine Na+, urea and NR concentrations of 498, 1143 and 361 mM
respectively, at urine flow rate of 0.0271 nl/min/nephron. That correspond to a
55.4% increase in urine osmolality, compared to the base-case. The optimal pa-
rameters increase the relative OM concentrating capability by 64% and relative IM
concentrating capability by 73.1% (given by increase CD tubular fluid osmolality
along the OM and IM), relative to base-case. Similar analysis for the other two
functions can be found in [4].

Figure 2: Profiles for fluid osmolality for Base-case, E(U/P )ρ, E(U/P )/TAT and
EFWA.

Figure 2 base-case shows that osmolality increased, with increasing medullary depth
in the CD, short loop of Henle, the longest loop of Henle (except near the OM-
IM boundary and along the prebend segment), and interstitium. For E(U/P )ρ,
E(U/P )/TAT also the osmolality increased. It is above the base-case (dotted line).
For EFWA the osmolality was lower than the base-case (dotted line) since the op-
timization procedure selected parameters that maximize EFWA by increasing urine
flow rate, even at expense of a lower urine osmolality.

• The optimization of (U/P ) corresponds to the situation where the animal is de-
prived of water. When (U/P ) is maximized in isolation, a highly concentrated
urine may be produced at an unrealistically low flow rate, because of that (U/P )ρ
is maximized.

•When E(U/P )ρ was optimized the model produced a urine osmolality of 2357 in
(mOsmol/kg H2O) which is above 55.4% the base-case.

•When E(U/P )/TAT was optimized energy efficiency was taken into account. In this
case the model produced a urine osmolality of 2192 in (mOsmol/kg H2O) which
is above 44.5% the base-case. These results suggest that a rat may be able to
attain a substantially higher concentrating capability by relatively small changes
in morphological and transport properties.

• For FWA the optimization algorithm selected parameters that maximize EFWA

by increasing urine flow rate.

Final Remarks: Because the optimization approach used in this study takes into
account the potential for the nonlinear interactions when a larger set of parameters
are simultaneously varied, this study offers the potential for a better understanding
of the integrated function in the rat and other mammalian UCM. The optimization
results support the conclusion of this study: that by means of modest changes in
parameters, the UCM can improve its efficiency and respond to different physiologic
needs.
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