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� Goal: Lay out a framework based on Bayesian probability, for systemat-
ically addressing the questions of Validation (the process of investigating
the capability of a mathematical model to reproduce particular physical
events) and Uncertainty Quantification (developing measures of the de-
gree of confidence in computer model predictions of quantities of interest)
for Tumor Growth Models.

Predictive Modeling

The successful use of computational models to predict physical events de-
pends upon several fundamental concepts and processes:

1. The mathematical model itself: the manifestation of a scientific theory cast
in mathematical structures intended to provide a meaningful abstraction of
reality.

2. The particular quantities of interest (QoI’s) of the physical event of inter-
est that are targets of the prediction must be clearly specified in advance.

3. Experimental observations must be made for two purposes: 1) calibra-
tion, to reduce uncertainty in the model parameters for the environment of
interest and 2) validation to subjectively determine if the model is capable
of predicting the quantities of interest with sufficient accuracy.

cS

cρ(d  )

vS

ρ
M

(m)

ρ
M

(m)

M
σ (m)

(m)
V

σ

pS

vQ

cQ

(d  )vρ

No

vQc

Yes

) < γ,( QM

Pass

Fail

Pass

Fail

Confidence
Increased

Invalid
Model not

is
Invalid

Model

Model Invalid

Check

Check

Model Invalid

Data Misfit

Data Misfit

The prediction pyramid, and a flow chart describing a

possible statistical validation process.

The Bayesian framework

Every step in both calibration and validation encounters uncertainties in
the model parameters m, the observational data d, the choice of a theoretical
model, and the design of the validation process itself.

� One must characterize all of these uncertainties, trace their propaga-
tion through the solution processes, and determine the uncertainty in the
target QoI’s, such as tumor volume or tumor shape.

Calibration

As described in Kaipio and Somersalo, Statistical and Computational Inverse Problems, 2005

• Given:

– a forward model D = G(M,E) relating model parameters M and noise E

with observables D (described by the likelihood function θ(d|m))

– actual observations dobs and the distribution of E, θnoise(e) (the prior pdf
of the noise, including observational and modeling error)

– a “prior” estimate, of model parameters and their uncertainty (described
by ρprior(m), the prior pdf of model parameters)

• Seek a statistical characterization of model parameters consistent with ob-
servations, forward model, and prior model: the posterior pdf of model pa-
rameters is given by

σ(m|d) = σM(m) =
ρprior(m)θ(dobs|m)

ρ(dobs)

� For additive noise independent of M, G representing a forward model
solve, the error model is D = G(M) + E and the posterior pdf is

σM(m) =
ρprior(m)θnoise(dobs −G(m))

ρ(dobs)

Validation
There are two steps to validation:

1. Data Misfit Check: Verify that the model is capable of reproducing the data
used for calibration and validation.

2. Validation of Prediction: Verify the accuracy of the QoI.

Data Misfit Check

� Check that there exists at least one set of model parameters m such
that the observed noise eobs (m) = dobs −G (m) is “likely.”

• Define ranges of eobs that are “likely” based off of the likelihood function.

• Check that there exists allowable m such that eobs (m) is in these ranges.

Validation of Prediction

� Check that different data does not drastically alter prediction of QoI

• Use different observational data, dobsV , and define the validation posterior pdf
σV (m) is σV (m) := σV

(
m|dobsV

)
∝ ρM (m) θnoise

(
eobsV |m

)
.

• Calculate the calibration predicted QoI and the validation predicted QoI
qCP (m) and qVP (m).

• Define meaningful metric between two pdf’s M (·, ·).

• Specify a tolerance γtol and declare the model not invalid if M
(
qCP , q

V
P

)
< γtol.

Uncertainty Quantification

� If validation criterion is passed, quantify the uncertainty in the QoI qCP (m)

by computing the mean, variance, etc. of its corresponding pdf.

Phase-Field Models of Tumor Growth

•We begin with the case of a two-phase isothermal mixture consisting of tu-
mor u and non-tumor n (i.e. healthy tissue and extracellular fluid).

• Include a representative nutrient, c, say oxygen.

We use the following two models each utilizing the same boundary and initial
conditions, but differing in that one has time dependent parameters:

M1: Proliferation/Apoptosis Model

ut = ∇ ·
(
Mu2∇µ

)
+ Pcu− Au

µ = f ′ (u)− ε2∆u− εχc
0 = ∇ · (D∇c)− cu

f ′ (u) = γ
(
4u3 − 6u2 + 2u

)

M2: Proliferation/Apoptosis Model
with Time Dependent Parameters

ut = ∇ ·
(
Mu2∇µ

)
+ Pcu− Au

µ = f ′ (u)− ε2∆u− εχ (t) c

0 = ∇ · (D (t)∇c)− cu
f ′ (u) = γ

(
4u3 − 6u2 + 2u

)

Illustrative Example

A sequence of two-dimensional im-
ages of the progressive growth of a
tumor at time t = 0, 3, 6, 9. Images
generated with model M2. These
(virtual) images are to be used for
calibration (image at t = 3) and vali-
dation (image at t = 6) for M1.

Use M2 to generate (virtual) data
against which the validity of M1 is as-
sessed for the QoI of the final tumor
volume.

Address the question: based on the
data observed at times t1 and t2, is
model M1 invalid for predicting the
QoI Q (u) =(tumor volume at t = 9)?

Setup

•Model parameters to be calibrated:

m = (χ,D) .

• The prior pdf is a uniform distribu-
tion:

ρ (χ,D) = U (3, 19.5)× U (0.3, 1.95) .

• The simulation mesh is an analogue of a typical MRI image. For data use:

– L2 norm of the observed pixels from the image

– Position of the interface pixels.

• Assume the pdf θnoise (e) is a bivariate, uncorrelated, half-normal distribution.

Calibration

Calibration Data Misfit Check

•Want eobs (m) ∈ [0, 0.25] for L2 data and
eobs (m) ∈ [0, 0.9] for interface data.

•Model passes the data misfit check.

Calibration Posterior PDF

• Calculated calibration posterior pdf us-
ing the given prior and likelihood func-
tions.

Plot of absolute observed error for

both data types. Interface error

indicated in blue and L2 indicated in

green.

Plot of absolute observed error for

both data types. Interface error

indicated in blue and L2 indicated in

green.

Validation

Validation Data Misfit Check

•Want eobs (m) ∈ [0, 0.25] for L2 data and
eobs (m) ∈ [0, 0.9] for interface data.

•Model passes the data misfit check.

Validation Posterior PDF

• Calculate the validation posterior pdf us-
ing the given prior and likelihood func-
tions.
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Left: Calibrated posterior pdf σM
(
χ,D|dobsc

)
. Right: Validation posterior pdf σV

(
χ,D|dobsv

)
.

Validation of Prediction

• Calculate the QoI chosen to be the tumor volume.

– Extend calculation for each pair of values of (χ,D) for which σM and σV

were originally calculated to compute the tumor volume at t = 9.

– Associate q (u (χ,D)) with the value σM
(
χ,D|dobsc

)
(or σV ).

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Tumor Volume at t=9

QoI Cummulative Distribution Functions

 

 

Calibration

Validation

Calibration
Mean: 3.7443
Std. Dev. 0.2203

Validation
Mean: 3.7701
Std. Dev. 0.1852

Left: M1 tumor simulation at t = 9 with (χ,D) = (9, 1.8), the most likely a posterior value.

Center: Cumulative distribution functions for the tumor volume at t = 9 as determined with

both the calibration (solid line) and the validation (dashed line) posterior pdfs.

• Using a metric of the largest difference between the inverse of the cdfs and
a tolerance γtol = 10%× q (MLE), we find the model to be not invalid.

Uncertainty Quantification

It still remains to determine how to answer the question “What will the vol-
ume of the tumor be at t = 9?”

Many ways:

• Volume associated with the most likely estimator ± the standard deviation,

•Mean of the QoI pdf ± the standard deviation,

•With an interval, say the associated 90% confidence interval.

However answered, the proposed framework offers an avenue to answer the
question with a level of uncertainty (confidence) associated with it.

� Conclusions: In the present exposition, we describe a unified approach
for statistical calibration and validation of models and prediction of quan-
tities of interest based on Bayesian inference. Importantly, the approach
can take into account uncertainties in parameters, observations, and the
model itself and lead to predictions with quantifiable uncertainty. While
we demonstrated the validation process using models from mixture the-
ory, the process itself is quite general, and is applicable to virtually any
modeling scenario. We believe that complementing these validation pro-
cesses in conjunction with a rich source of relevant data can lead to a
predictive approach to tumor growth modeling.
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