Synchrony, Phase-Shift Synchrony, and Synchony-Breaking

NIMBioS
April 11, 2011

Marty Golubitsky
Mathematical Biosciences Institute and
Department of Mathematics
Ohio State University

Networks and Coupled Systems (1)

$$
(1) \quad \begin{aligned}
& \dot{x}_{1}=f\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=f\left(x_{2}, x_{1}\right)
\end{aligned} \quad x_{1}, x_{2} \in \mathbf{R}^{k}
$$

$\Delta=\left\{x_{1}=x_{2}\right\}$ is flow-invariant

$$
\begin{aligned}
& \dot{x}_{1}=f\left(x_{1}, x_{3}\right) \\
& \dot{x}_{2}=f\left(x_{2}, x_{1}\right) \\
& \dot{x}_{3}=f\left(x_{3}, x_{2}\right)
\end{aligned} \quad x_{1}, x_{2}, x_{3} \in \mathbf{R}^{k}
$$

$\Delta=\left\{x_{1}=x_{2}=x_{3}\right\}$ is flow-invariant

$$
C(1) \longrightarrow\left(\begin{array}{l}
\dot{x}_{1}=f\left(x_{1}, x_{1}, \lambda\right) \\
\dot{x}_{2}=f\left(x_{2}, x_{1}, \lambda\right) \\
\dot{x}_{3}=f\left(x_{3}, x_{2}, \lambda\right)
\end{array} \quad x_{1}, x_{2}, x_{3} \in \mathbf{R}^{k}\right.
$$

$\Delta=\left\{x_{1}=x_{2}=x_{3}\right\}$ is flow-invariant

Synchrony Subspaces

- Polydiagonal is subspace $\Delta=\left\{x_{c}=x_{d}\right.$ for some subset of cells $\}$
- Synchrony subspace is flow-invariant polydiagonal
- Synchrony subspace corresponds to solutions with EXACT synchrony between subsets of nodes

Chain with Back Coupling

- $\boldsymbol{\Delta}=\left\{\mathrm{x}_{1}=\mathrm{x}_{4}=\mathrm{x}_{7} ; \mathrm{x}_{2}=\mathrm{x}_{5} ; \mathrm{x}_{3}=\mathrm{x}_{6}\right\}$ is flow-invariant
- Δ is a synchrony subspace

Balanced Coloring

- Let Δ be a polydiagonal
- Color equivalent cells the same color if cell coord's in Δ are equal
- Coloring is balanced if all cells with same color receive equal number of inputs from cells of a given color

- Theorem 1: synchrony subspace \Longleftrightarrow balanced

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)

2D-Lattice Dynamical Systems

- square lattice with nearest neighbor coupling
- Network architecture is more important than symmetry
- Form two-color balanced relation

- Each black cell connected to two black and two white Each white cell connected to two black and two white Stewart, G. and Nicol (2004)

Lattice Dynamical Systems

- On Black/White diagonal interchange black and white

Result is balanced

- Continuum of different synchrony subspaces

Lattice Dynamical Systems

- Architecture is important
- For square lattice with nearest and next nearest neighbor coupling
- No infinite families
- For each k a finite number of balanced k colorings
- All balanced colorings are doubly-periodic

Antoneli, Dias, G., and Wang (2004)

Phase-Shift Synchrony: Two Identical Cells

$$
\text { (1) } 2=\begin{aligned}
& \dot{x}_{1}=f\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=f\left(x_{2}, x_{1}\right)
\end{aligned} \quad x_{1}, x_{2} \in \mathbf{R}^{k}
$$

- Rigid time-periodic solutions exist where cells oscillate in phase

$$
x_{2}(t)=x_{1}(t)
$$

Not surprising since $x_{1}=x_{2}$ is flow-invariant

- Robust time-periodic solutions exist where cells oscillate a half-period out-of-phase

$$
x_{2}(t)=x_{1}\left(t+\frac{T}{2}\right)
$$

Spatio-Temporal Symmetries

- A symmetry of $\dot{x}=F(x)$ is linear map γ that takes sol'ns to sol'ns
- Let $x(t)$ be a time-periodic solution

$$
H=\{\gamma \in \Gamma: \gamma\{x(t)\}=\{x(t)\}\} \text { spatiotemporal symm's }
$$

- $\gamma \in H \Longrightarrow \theta \in \mathbf{S}^{1} \quad$ such that $\quad \gamma x(t)=x(t+\theta)$
- Example: $H=\mathbf{Z}_{2}\left(\begin{array}{ll}1 & 2\end{array}\right) ; \quad \theta=0 \quad$ or $\quad \theta=\frac{T}{2}$

Three-Cell Bidirectional Ring: $\Gamma=\mathrm{S}_{3}$

$$
\begin{aligned}
& \dot{x}_{1}=f\left(x_{1}, x_{2}, x_{3}\right) \\
& \dot{x}_{2}=f\left(x_{2}, x_{3}, x_{1}\right) \quad f\left(x_{2}, x_{1}, x_{3}\right)=f\left(x_{2}, x_{3}, x_{1}\right) \\
& \dot{x}_{3}=f\left(x_{3}, x_{1}, x_{2}\right)
\end{aligned}
$$

- Out-of-phase: $\quad H=<\left(\begin{array}{ll}1 & 3\end{array}\right)(2)>$

$$
x_{3}(t)=x_{1}\left(t+\frac{T}{2}\right) \quad \text { and } \quad x_{2}(t)=x_{2}\left(t+\frac{T}{2}\right)
$$

G. and Stewart (1986)

Discrete Rotating Wave

- Out-of-phase: $\quad H=<\left(\begin{array}{ll}1 & 3\end{array}\right)>$

$$
x_{2}(t)=x_{1}\left(t+\frac{T}{3}\right) \quad \text { and } \quad x_{3}(t)=x_{2}\left(t+\frac{T}{3}\right)=x_{1}\left(t+\frac{2 T}{3}\right)
$$

Quotient Networks: Self-Coupling \& Multiarrows

- Balanced two-coloring of bidirectional ring

$$
\begin{aligned}
& \dot{\mathbf{x}}_{1}=\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right) \\
& \dot{\mathbf{x}}_{2}=\mathbf{f}\left(\mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{1}\right) \quad \text { where } \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{f}(\mathbf{x}, \mathbf{z}, \mathbf{y}) \\
& \dot{\mathbf{x}}_{3}=\mathbf{f}\left(\mathbf{x}_{3}, \mathbf{x}_{1}, \mathbf{x}_{2}\right)
\end{aligned}
$$

$\Delta=\left\{x_{1}=x_{2}\right\}$ is a synchrony subspace

- Quotient network:

$$
\begin{aligned}
& \dot{\mathrm{x}}_{1}=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{1}, \mathrm{x}_{3}\right) \\
& \dot{\mathrm{x}}_{3}=\mathrm{f}\left(\mathrm{x}_{3}, \mathrm{x}_{1}, \mathrm{x}_{1}\right) \quad \text { where } \mathrm{f}(\mathrm{x}, \mathbf{y}, \mathbf{z})=\mathbf{f}(\mathbf{x}, \mathbf{z}, \mathbf{y})
\end{aligned}
$$

Asym Network; Symmetric Quotient

- Quotient is bidirectional 3-cell ring with D_{3} symmetry

- Rigid phase shift; no symmetry

Pattern of Phase-Shift Synchrony

- Let \mathcal{G} be a network
- Pattern of phase-shift synchrony is quotient network \mathcal{Q} and permutation symmetry $\sigma: \mathcal{Q} \rightarrow \mathcal{Q}$
- A T-periodic solution $Z(t)$ to a \mathcal{G}-admissible system has pattern of phase-shift synchrony \mathcal{Q} and σ) if
- $\{Z(t)\} \subset \Delta_{\mathcal{Q}} ; Y(t)$ is $Z(t)$ viewed in quotient network
- $\sigma Y(t)=Y\left(t+\frac{T}{m}\right)$ where m is order of σ

Consequences of Pattern of Phase-Shift Synchrony

- $\{Z(t)\} \subset \Delta_{\mathcal{Q}} \Longrightarrow z_{c}(t)=z_{d}(t)$ when nodes $c, d \in \mathcal{G}$ have same color
- $\sigma=\sigma_{1} \cdots \sigma_{s}$ product of disjoint cycles of orders $m_{1}, \ldots, m_{s} \leq m$
- Renumber nodes in \mathcal{Q} so that $\sigma_{1}=\left(1 \cdots m_{1}\right)$. Let $Y(t)$ be $Z(t)$ viewed in \mathcal{Q}. Then $\sigma Y(t)=Y\left(t+\frac{T}{m}\right)$ implies

$$
\begin{aligned}
y_{2}(t) & =y_{1}\left(t+\frac{T}{m}\right) \\
& \vdots \\
y_{m_{1}}(t) & =y_{m_{1}-1}\left(t+\frac{T}{m}\right) \\
y_{1}(t) & =y_{m_{1}}\left(t+\frac{T}{m}\right)
\end{aligned}
$$

- So $y_{1}(t)=y_{1}\left(t+\frac{m_{1}}{m} T\right)$ and y_{1} has period $T_{1}=\frac{m_{1}}{m} T$
- Cycles of different lengths in σ imply multirhythms

Rigid Phase-Shift \Leftrightarrow Pattern of Phase-Shift Synchrony

- $Z(t)=\left(z_{1}(t), \ldots, z_{N}(t)\right)$ is hyperbolic T-periodic solution
- Phase-shift synchrony between nodes i, j

$$
z_{i}(t)=z_{j}(t+\theta T) \text { where } 0 \leq \theta<1
$$

- Phase-shift synchrony is rigid if perturbing system leads to periodic solution with same phase-shift θ
- Theorem 2: Assume path-connected network \mathcal{G}. Nonzero rigid phase-shift synchrony iff phase-shift forced by some symmetry on a quotient network

Stewart and Parker (2008, 2009); G., Romano and Wang (2010, 2011)

Regular Three Cell Networks

- Regular network: one type of node and one type of coupling
- Valency $=\nu=$ total number of inputs per cell

$$
a_{i 1}+a_{i 2}+a_{i 3}=\nu \quad \text { for } \quad j=1,2,3
$$

- 34 regular three-cell valency 2 networks

Leite and G. (2006)

13 Three-Cell Transitive Networks

5.

6.

10.

11.

14.

15. $1 \underset{\longleftrightarrow}{\rightleftarrows} \leftrightarrows 2$

19.

23.

24.

21 Three-Cell Feed-Forward Networks

1.

7.

9. $(1) \rightarrow 3 \rightarrow 2$

22.

33.

25.

28.

31.

34.

Three-Cell Feed-Forward Network

- Network supports solution by Hopf bifurcation where $x_{1}(t)$ equilibrium $\quad x_{2}(t), x_{3}(t)$ time periodic
- $x_{2}(t) \approx \lambda^{1 / 2} \quad x_{3}(t) \approx \lambda^{1 / 6}$

G., Nicol, and Stewart (2004); Elmhirst and G. (2005)

Eigenspace Types of Jacobians

- 20 networks have real simple eigenvalues
- Simple complex eigenvalues: $2,14,18,19,24$

- Double with two synchrony-breaking eigenvectors: 4, 7, 8

- Nilpotent: 3; 6, 11, 27, 28

- Double with synchrony preserving eigenvector: 12

Leite and G. (2006)

Nilpotent Hopf Bifurcation

- Networks 3, 28, 27: branches that grow at $\lambda^{\frac{1}{6}}$

(b)

- Networks 6, 11: two or four branches that grow $\lambda^{\frac{1}{2}}$

- Regular five-cell network: two branches that grow λ

Nilpotent Hopf in Network 27

Thanks

Ian Stewart	Warwick	Network Theory
Maria Leite	Oklahoma Three-Cell Networks	
Toby Elmhirst	Cook	Feedforward
Matt Nicol	Houston	Feedforward
Kreso Josic	Houston	Network Theory
Marcus Pivato	Trent	Network Theory
Andrew Török	Houston	Network Theory
David Romano	Grinnell	Phase-Shift Synchrony
Yunjiao Wang	MBI	Phase-Shift Synchrony \& Lattices
Ana Paula Dias	Porto	Lattices
Fernando Antoneli	Sao Paulo Lattices	

