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Networks and Coupled Systems (1)
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A = {x; = x2} is flow-invariant

@ 1 = f(z1,23)
/ \ j32 - f(IQ,CCl) T1,22,T3 € Rk
G—@
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A = {x; = 2o = x3} is flow-invariant



Synchrony Subspaces

e Polydiagonal is subspace A = {x. = x4 for some subset of cells}
e Synchrony subspace s flow-invariant polydiagonal

e Synchrony subspace corresponds to solutions with EXACT
synchrony between subsets of nodes



Chain with Back Coupling

00 00

x1 = f(x1,x3) X2 = f(x2,x1) x3 = f(x3,x2)
x4 = f(x4,%x3) x5 = f(x5,x4) x¢ = f(x6,Xx5)
}.(7 — f(X7, X6)

o A = {x1 =x4 =X7; Xo =X5; Xg = Xg} IS flow-invariant

e A iIs a synchrony subspace



Balanced Coloring

e Let A be a polydiagonal

e Color equivalent cells the same color
If cell coord’s in A are equal

e Coloring is balanced if all cells with same color receive equal
number of inputs from cells of a given color

'EON ¥ RON X

e Theorem 1: synchrony subspace < balanced

Stewart, G., and Pivato (2003); G., Stewart,and T 0ro6k (2005)
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e sguare lattice with nearest neighbor coupling
e Network architecture is more important than symmetry

e Form two-color balanced relation
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e Each black cell connected to two black and two white

Each white cell connected to two black and two white

Stewart, G. and Nicol (2004)
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Result Is balanced

e Continuum of different synchrony subspaces
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Lattice Dynamical Systems

e Architecture is important

e For square lattice with nearest and next nearest neighbor coupling

e No infinite families
e For each £ a finite number of balanced £ colorings

e All balanced colorings are doubly-periodic

Antoneli, Dias, G., and Wang (2004)



Phase-Shift Synchrony: Two Identical Cells
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e Rigid time-periodic solutions exist where cells oscillate in phase

f(z1,z2)
f(va xl)

T1,T9 € R*
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z2(t) = z1(1)

Not surprising since x; = z» Is flow-invariant

e Robust time-periodic solutions exist where cells oscillate a
half-period out-of-phase

T
ro(t) = z1(t + 3

)



Spatio-Temporal Symmetries

e A symmetry of £ = F(x) is linear map ~ that takes sol'ns to sol'ns
e Let x(t) be atime-periodic solution

H={yel:~{z(t)} ={x(t)}} spatiotemporal symm’s
e yc H=—0¢cS' suchthat ~z(t)=x(t+0)

o Example: H=17Z5(12); =0 or 0==<



Three-Cell Bidirectional Ring: I'= S5

jjl f(CUl,CCQ,CCg)

()
// \ 5?2 f(zo,x3,21) f(22,21,23) = f(22,23,71)

—>@ I3 f(x373317332)

e Out-of-phase: H =< (13)(2) >

z3(t) =21 (t+5) and  xa(t) =2 (t+ 5)

G. and Stewart (1986)



Discrete Rotating Wave

e Out-of-phase: H =< (1 3) >

xQ(t):x1(t+ and z3(t) = I _xl(tJrQT)

""""""""""""




Quotient Networks: Self-Coupling & Multiarrows

e Balanced two-coloring of bidirectional ring O

X1
X2
X3

f(X17 X2, X3)
f(X27 X3, Xl)
f(X37 X1, X2)

> e

=

where f(x,y,z) =f(x,2,y)

A = {x1 = x5} IS a synchrony subspace

e Quotient network:

X1
X3

f(Xla X1, X3)
f(X37 X1, Xl)

where f(x,y,z) =f(x,2,y)



Asym Network; Symmetric Quotient

e Quotient is bidirectional 3-cell ring with D3 symmetry
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¢ Rigid phase shift; no symmetry



Pattern of Phase-Shift Synchrony

e Let G be a network

e Pattern of phase-shift synchrony Is quotient network © and
permutation symmetry o : 9 — 9

e A T-periodic solution Z(t) to a G-admissible system
has pattern of phase-shift synchrony Q and o) if

o {Z(t)} C Ag; Y(t)is Z(t) viewed in quotient network

e 0Y(t)=Y (t+ L) where m is order of &



Consequences of Pattern of Phase-Shift Synchrony

o {Z(t)} C Ag = z.(t) = z4(t) when nodes ¢, d € G have same color
e 0 = 0y -0 product of disjoint cycles of orders mq,...,ms <m

e Renumber nodesin @ sothato; = (1---m1). Let Y (¢) be Z(t)
viewed in Q. Then oY (t) = V(¢ + L) implies

y2(t) = wn(t+ %)
dmi() = Ymyr(t+ L)
Y1 (t) =  Ymy (t -+ %)

e Soyi(t) =yi(t +22T) and y; has period 77 = “LT

e Cycles of different lengths in ¢ imply multirhythms



Rigid Phase-Shift < Pattern of Phase-Shift Synchrony

o Z(t) = (21(t),...,2n(t)) is hyperbolic T-periodic solution

e Phase-shift synchrony between nodes 1, j

zi(t) = zj(t +07) where 0 <6 < 1

e Phase-shift synchrony is rigid if perturbing system leads to periodic
solution with same phase-shift ¢

e Theorem 2: Assume path-connected network G. Nonzero rigid
phase-shift synchrony iff phase-shift forced by some symmetry on a
guotient network

Stewart and Parker (2008, 2009); G., Romano and Wang (2010, 2 011)



Regular Three Cell Networks

e Regular network : one type of node and one type of coupling
e Valency = v = total number of inputs per cell

a1 + a2 + a;3 = v for 7=1,2,3

e 34 regular three-cell valency 2 networks

Leite and G. (2006)



13 Three-Cell Transitive Networks
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21 Three-Cell Feed-Forward Networks
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Three-Cell Feed-Forward Network

f(xlaxla)\) Oé—|—6
f(z2,21,A) J = B
0

f(ﬂi'g, X2, )‘)

L@ -

e Network supports solution by Hopf bifurcation where
x1(t) equilibrium xa(t), z3(t) time periodic

= L O
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o 15(t) ~ A{/2 r3(t) =~ \1/6
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G., Nicol, and Stewart (2004); Elmhirst and G. (2005)




Eigenspace Types of Jacobians

e 20 networks have real simple eigenvalues

e Simple complex eigenvalues: 2, 14, 18, 19, 24

T G T (= o=
e Double with two synchrony-breaking eigenvectors: 4, 7, 8

B0 T ED

e Nilpotent: 3; 6, 11, 27,

(O—0—0) @&@3 @ﬁ@ =0 TS0

e Double with synchrony preserving eigenvector: 12

(O50=0)

Leite and G. (2006)



Nilpotent Hopf Bifurcation

e Networks 3, 28, 27: branches that grow at AG
©

c@%@g@@%@z@

e Networks 6, 11: two or four branches that grow A2

2

e Regular five-cell network: two branches that grow A

Elmhirst and G. (2005)
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