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Networks and Coupled Systems (1)

1 2
ẋ1 = f(x1, x2)
ẋ2 = f(x2, x1)

x1, x2 ∈ Rk

∆ = {x1 = x2} is flow-invariant

1

2 3

ẋ1 = f(x1, x3)
ẋ2 = f(x2, x1)
ẋ3 = f(x3, x2)

x1, x2, x3 ∈ Rk

∆ = {x1 = x2 = x3} is flow-invariant

1 2 3
ẋ1 = f(x1, x1, λ)
ẋ2 = f(x2, x1, λ)
ẋ3 = f(x3, x2, λ)

x1, x2, x3 ∈ Rk

∆ = {x1 = x2 = x3} is flow-invariant



Synchrony Subspaces

• Polydiagonal is subspace ∆ = {xc = xd for some subset of cells}

• Synchrony subspace is flow-invariant polydiagonal

• Synchrony subspace corresponds to solutions with EXACT
synchrony between subsets of nodes



Chain with Back Coupling

1 2 3 4 5 6 7

ẋ1 = f(x1,x3) ẋ2 = f(x2,x1) ẋ3 = f(x3,x2)
ẋ4 = f(x4,x3) ẋ5 = f(x5,x4) ẋ6 = f(x6,x5)
ẋ7 = f(x7,x6)

• ∆ = {x1 = x4 = x7; x2 = x5; x3 = x6} is flow-invariant

• ∆ is a synchrony subspace



Balanced Coloring

• Let ∆ be a polydiagonal

• Color equivalent cells the same color
if cell coord’s in ∆ are equal

• Coloring is balanced if all cells with same color receive equal
number of inputs from cells of a given color

1 2 3 4 5 6 7

• Theorem 1 : synchrony subspace ⇐⇒ balanced

Stewart, G., and Pivato (2003); G., Stewart, and T ör ök (2005)



2D-Lattice Dynamical Systems

• square lattice with nearest neighbor coupling

• Network architecture is more important than symmetry

• Form two-color balanced relation

• Each black cell connected to two black and two white

Each white cell connected to two black and two white
Stewart, G. and Nicol (2004)



Lattice Dynamical Systems

• On Black/White diagonal interchange black and white

Result is balanced

• Continuum of different synchrony subspaces



Lattice Dynamical Systems

• Architecture is important

• For square lattice with nearest and next nearest neighbor coupling

• No infinite families

• For each k a finite number of balanced k colorings

• All balanced colorings are doubly-periodic

Antoneli, Dias, G., and Wang (2004)



Phase-Shift Synchrony: Two Identical Cells

1 2
ẋ1 = f(x1, x2)
ẋ2 = f(x2, x1)

x1, x2 ∈ Rk

• Rigid time-periodic solutions exist where cells oscillate in phase

x2(t) = x1(t)

Not surprising since x1 = x2 is flow-invariant

• Robust time-periodic solutions exist where cells oscillate a
half-period out-of-phase

x2(t) = x1(t+
T

2
)



Spatio-Temporal Symmetries

• A symmetry of ẋ = F (x) is linear map γ that takes sol’ns to sol’ns

• Let x(t) be a time-periodic solution

H = {γ ∈ Γ : γ{x(t)} = {x(t)}} spatiotemporal symm’s

• γ ∈ H =⇒ θ ∈ S1 such that γx(t) = x(t+ θ)

• Example: H = Z2(1 2); θ = 0 or θ = T
2



Three-Cell Bidirectional Ring: Γ = S3

1

2 3

ẋ1 = f(x1, x2, x3)
ẋ2 = f(x2, x3, x1) f(x2, x1, x3) = f(x2, x3, x1)
ẋ3 = f(x3, x1, x2)

• Out-of-phase: H =< (1 3)(2) >

x3(t) = x1
(

t+ T
2

)

and x2(t) = x2
(

t+ T
2

)
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Discrete Rotating Wave

• Out-of-phase: H =< (1 3) >

x2(t) = x1
(

t+ T
3

)

and x3(t) = x2
(

t+ T
3

)

= x1
(

t+ 2T
3

)
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Quotient Networks: Self-Coupling & Multiarrows

• Balanced two-coloring of bidirectional ring

ẋ1 = f(x1,x2,x3)
ẋ2 = f(x2,x3,x1) where f(x,y, z) = f(x, z,y)
ẋ3 = f(x3,x1,x2)

∆ = {x1 = x2} is a synchrony subspace

• Quotient network:

ẋ1 = f(x1,x1,x3)
ẋ3 = f(x3,x1,x1) where f(x,y, z) = f(x, z,y)



Asym Network; Symmetric Quotient
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• Quotient is bidirectional 3-cell ring with D3 symmetry
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• Rigid phase shift; no symmetry



Pattern of Phase-Shift Synchrony

• Let G be a network

• Pattern of phase-shift synchrony is quotient network Q and
permutation symmetry σ : Q → Q

• A T -periodic solution Z(t) to a G-admissible system
has pattern of phase-shift synchrony Q and σ) if

• {Z(t)} ⊂ ∆Q; Y (t) is Z(t) viewed in quotient network

• σY (t) = Y
(

t+ T
m

)

where m is order of σ



Consequences of Pattern of Phase-Shift Synchrony

• {Z(t)} ⊂ ∆Q =⇒ zc(t) = zd(t) when nodes c, d ∈ G have same color

• σ = σ1 · · ·σs product of disjoint cycles of orders m1, . . . ,ms ≤ m

• Renumber nodes in Q so that σ1 = (1 · · ·m1). Let Y (t) be Z(t)
viewed in Q. Then σY (t) = Y (t+ T

m) implies

y2(t) = y1(t+
T
m)

...
ym1

(t) = ym1−1(t+
T
m)

y1(t) = ym1
(t+ T

m)

• So y1(t) = y1(t+
m1

m T ) and y1 has period T1 =
m1

m T

• Cycles of different lengths in σ imply multirhythms



Rigid Phase-Shift ⇔ Pattern of Phase-Shift Synchrony

• Z(t) = (z1(t), . . . , zN (t)) is hyperbolic T -periodic solution

• Phase-shift synchrony between nodes i, j

zi(t) = zj(t+ θT ) where 0 ≤ θ < 1

• Phase-shift synchrony is rigid if perturbing system leads to periodic
solution with same phase-shift θ

• Theorem 2: Assume path-connected network G. Nonzero rigid
phase-shift synchrony iff phase-shift forced by some symmetry on a
quotient network

Stewart and Parker (2008, 2009); G., Romano and Wang (2010, 2 011)



Regular Three Cell Networks

• Regular network : one type of node and one type of coupling

• Valency = ν = total number of inputs per cell

ai1 + ai2 + ai3 = ν for j = 1, 2, 3

• 34 regular three-cell valency 2 networks

Leite and G. (2006)



13 Three-Cell Transitive Networks
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21 Three-Cell Feed-Forward Networks
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Three-Cell Feed-Forward Network

• 1 2 3
ẋ1 = f(x1, x1, λ)
ẋ2 = f(x2, x1, λ)
ẋ3 = f(x3, x2, λ)

J =





α+ β 0 0
β α 0
0 β α





• Network supports solution by Hopf bifurcation where
x1(t) equilibrium x2(t), x3(t) time periodic

• x2(t) ≈ λ1/2 x3(t) ≈ λ1/6

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

15
x 10

−81

x 1

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.2

0

0.2

0.4

x 2

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

x 3

0 10 20 30 40 50 60 70 80 90 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t

G., Nicol, and Stewart (2004); Elmhirst and G. (2005)



Eigenspace Types of Jacobians

• 20 networks have real simple eigenvalues

• Simple complex eigenvalues: 2, 14, 18, 19, 24
1

23 2
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3 2

1

3 2

1
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1

3

• Double with two synchrony-breaking eigenvectors: 4, 7, 8
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• Nilpotent: 3; 6, 11, 27, 28
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• Double with synchrony preserving eigenvector: 12
1 2 3

Leite and G. (2006)



Nilpotent Hopf Bifurcation

• Networks 3, 28, 27: branches that grow at λ
1

6

1 2 3

1

3 2

2 1 3

(a) (b)

• Networks 6, 11: two or four branches that grow λ
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• Regular five-cell network: two branches that grow λ
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Elmhirst and G. (2005)



Nilpotent Hopf in Network 27
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Yunjiao Wang MBI Phase-Shift Synchrony & Lattices
Ana Paula Dias Porto Lattices
Fernando Antoneli Sao Paulo Lattices
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