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Spatio-Temporal Statistics

P There is no history without geography (and v.v.). We consider space and time
together

» The dynamical evolution (time dimension) of spatial processes means that we are
able to reach more forecefully for the “Why” question. The problems are clearest
when there is no aggregation ; henceforth consider processes at point-level
support

» Consider the deterministic 1-D space x time, reaction-diffusion equation:

JY (s;t) B 582Y(8; t)

ot gsz Y (sit);

(3 is the diffusion coefficient



Reaction-Diffusion Plots

Y (s,0) = 1(15 < s <24)

@a=1,08=20;b) a=0.056=0.05(CC)a=1,6=50



Stochastic Version

Consider the stochastic PDE:

where {(s;t): s € R,t > 0} is a zero-mean random process. Here we assume white
noise for 4:

E(5(s;t)) = 0

cov(d(s;t),0(u;r)) = 021(8 =u,t=r)



Stochastic Reaction-Diffusion Plots
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Spatio-Temporal Covariance Function

P The stochastic reaction-diffusion equation implies a (stationary in space and time)
covariance function

C(h;T)=cov(Y(s;t),Y(s+ h;t+ 7))
and correlation function
p(h; ) = C(h;7)/C(0;0)

Heine (1955) Biometrika, gives a closed-form solution for p(-; -)



Contour Plot.of Spatio-Temporal Correlation Function
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p(h;T) for the stochastic reaction-diffusion equation



Separ ability of Spatio-Temporal Covariance Functions

& Stochastic PDEs are built from dynamical physical considerations and they imply
covariance functions

P Covariance functions have to be positive-definite (p-d) . So, specifying classes
of spatio-temporal covariance functions to describe the dependence in
spatio-temporal data is not all that easy

B Suppose the spatial C(1)(h) is p-d and the temporal C(2)(7) is p-d. Then the
separable class:

C(h;7) = C’(l)(h) : 0(2)(7')
IS guaranteed to be p-d

» Separability is unusual in dynamical models it says that temporal evolution
proceeds independently at each spatial location



I Stochastic Reaction-Diffusion and Separ ability

D fCh;r)=CO(h)-CcO(7),
then
C(h;0) = CDOR)C@(0)

co;r) = oW (n),

and hence cO(hy . c@)(7)

C(0;0)
C(h;0) - C(0;7)
~ 0(0;0) - C(0;0)
= p(h;0) - p(0;7)

p(h;t) =

P s this true for the stochastic reaction-diffusion equation? Plot

p(h;0) - p(0;7) versus (h,T)
p(h;T) versus (h, T

N



Contour Plots of Spatio-Temporal Correlation Functions
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The difference in correlation functions is striking . Hence p(-; -) is not separable .
Can we see the difference between separability and non-separability in their
realizations ?



Non-Separable Realizationsin Space-Time

Three realizations of Y (s; 1)

Realizations are generated from a stationary Gaussian process with the

non-separable , reaction-diffusion correlation function, p(h; 1)



Separ able Realizationsin Space-Time

Three realizations of Y (s; 1)

Realizations are generated from a stationary Gaussian process with separable
correlation function, p(h;0) - p(0; 7)



| nference on a Hidden Spatio-Temporal Process

P We could ignore the dynamics and treat time as another “spatial” dimension. Write
the data as:

Z = (Z(s1;t1),...,Z(sn;tn)),

which are observations taken at known space-time “locations”. The data are noisy
and not observed at all locations of interest

» Assume a hidden (“true”) process  {Y(s;t): s € D C R%; t > 0}, which is not
observable due to measurement error and missingness. Write

Z =Y + ¢,

where E(g) = 0, var(e) = o21. We wish to predict Y (so;to) from data Z



Spatio-Temporal Kriging

Predict Y (sg;to) with the linear predictor X' Z:
For simplicity, assume E(Y (s;t)) = 0. Then minimize w.r.t. A, the mean squared
prediction error

E(Y(SQ; to) — }\/Z)2 .

This results in the simple kriging predictor
?(So; to) = c(so; to)’Zglz :

where 7 = var(Z) and c(so;to) = cov(Y (so;to), Z)

The simple kriging standard error (s.e.) is:

ok (so;to) = {var(Y (so;t0)) — C<SO§tO)/221C(SO;tO)}1/2



Kriging for the Stochastic Reaction-Diffusion Equation
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(@) Full realization; e = 0

(b) Crosses show {(s;;t;)} superimposed on the kriging predictor
map, {Y (so;to0)}

(c) Kriging s.e. map, {o.(so;t0)}



Kriging for the Stochastic Reaction-Diffusion Equation, ctd.
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(@) Same full realization; € = 0

(b) Crosses show different {(s;;¢;)} superimposed on the kriging predictor
map, {Y (so;to0)}

(c) Kriging s.e. map, {o.(so;t0)}



Emphasize the Dynamics

Approximate the differentials in the reaction-diffusion equation:

oy  0%Y

o —ay
ot 5882 “

with differences :

Y(s;t+ A¢) — Y (s;t) Y(s+ Ag;t) —2Y (s;t) + Y (s — Ag; t) .
Ay 5{ A2 } —oXist)

Define Y: = (Y (As;t),..., Y (79 — Ag;t); YB = (Y(0;¢),Y(79;¢)). Then the
stochastic version of the difference equation is:

Yiprn, = MY+ MpYP +6i4n,

where MY represents given boundary effects. The difference equation is a good

approximation to the differential equation, provided aA; < 1 and 28A:/A2 < 1



Emphasize the Dynamics, ctd.

Importantly,
[ 01 62 0 0 |
02 601 02
M = 0 92 191 !
02
0 0 ... 02 61 |

where 01 = (1 — aA¢s — 2B8A:/A2), 05 = BA:/AZ. This can be viewed as the
propagator matrix of a VAR(1) process. The matrix is defined by the dynamics. In other
words, in a model of spatio-temporal dependence, M has structure (and is sparse).
Conditional on the boundary effects, we see that the lagged covariances are given by,

o™ = mmcl?,

where Cx(/m) =cov(Y¢, Yiyma,),m=0,1,2,...



Comparison of Differential and Difference Equations
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The Dynamics.in the Difference Equation

Think of a spatial process at time t rather than a spatio-temporal process. Call it the
vector Y. Then describe the dynamics by a VAR(1):

Y:=MYi_1+ ¢

The choice of M is crucial. Define M = (m;;) “spatially” , that is, where the m;
corresponding to nearby locations s; and s; are non-zero , and are zero when locations
are far apart

This applies the “First Law of Geography” (Tobler; cf. Fisher and wheat yields) to the

dynamical evolution of the process



Structure of M
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General M M defined “spatially”



| nstantaneous Spatial Dependence (1 SD)

To capture the process’ behavior at small temporal scales between time ¢ and time ¢ + 1,
we need a component of variation that is modeled as instantaneous spatial
dependence (ISD)

Y:=DBoY:+B1Y¢—1 4+ v,

where By has zero down its diagonal. Model By and B, “spatially” ; see the figure
below. This implies

Y =MYi_1+ 0¢,

where M = (I — Bg)~'B;7 and 6; = (I — Bp) 'v:. What use are By and B1? They

have dynamic structure and are sparse !



|SD in Graphical Form
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Nonstationar ity

Stationarity can be an unrealistic assumption. Descriptive approaches to
spatio-temporal modeling, expressed in terms of covariance functions, almost
demand it.

Dynamical approaches are much more forgiving. Consider the nonstationary
VAR(1) process:

Yi=MYi—1+ 0¢

For example,

where
1 0<t<29

f)=<¢ —1 30<t<59
1 60<¢t<T79,

\

and M is tridiagonal but has different parameters for 0 < s < 19 and for 20 < s < 39



Realizations for Nonstationary Process

Three realizations of Y (s; 1)

Yi=MYi 1+ 6



Space-Time

... the NEXT frontier

(with apologies to Gene Roddenberry and Trekkies)
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