Spatio-Temporal Statistics

Noel Cressie*
Program in Spatial Statistics and Environmental Statistics
The Ohio State University

Christopher K. Wikle
Department of Statistics
University of Missouri, Columbia

Slides are based on the book, "Statistics for Spatio-Temporal Data" by Cressie and Wikle, 2011, Wiley, Hoboken, NJ
*ncressie@stat.osu.edu

Spatio-Temporal Statistics

- There is no history without geography (and v.v.). We consider space and time together
- The dynamical evolution (time dimension) of spatial processes means that we are able to reach more forecefully for the "Why" question. The problems are clearest when there is no aggregation; henceforth consider processes at point-level support
- Consider the deterministic 1-D space \times time, reaction-diffusion equation:

$$
\frac{\partial Y(s ; t)}{\partial t}=\beta \frac{\partial^{2} Y(s ; t)}{\partial s^{2}}-\alpha Y(s ; t)
$$

β is the diffusion coefficient

Reaction-Diffusion Plots

$$
Y(s, 0)=I(15 \leq s \leq 24)
$$

(a) $\alpha=1, \beta=20$; (b) $\alpha=0.05, \beta=0.05$; (c) $\alpha=1, \beta=50$

Stochastic Version

Consider the stochastic PDE:

$$
\frac{\partial Y}{\partial t}-\beta \frac{\partial^{2} Y}{\partial s^{2}}+\alpha Y=\delta
$$

where $\{\delta(s ; t): s \in \mathbb{R}, t \geq 0\}$ is a zero-mean random process. Here we assume white noise for δ :

$$
\begin{gathered}
E(\delta(s ; t)) \equiv 0 \\
\operatorname{cov}(\delta(s ; t), \delta(u ; r))=\sigma^{2} I(s=u, t=r)
\end{gathered}
$$

Stochastic Reaction-Diffusion Plots

(a) $\sigma=0.01$; (b) $\sigma=0.1$; (c) $\sigma=1$

Spatio-Temporal Covariance Function

- The stochastic reaction-diffusion equation implies a (stationary in space and time) covariance function:

$$
C(h ; \tau) \equiv \operatorname{cov}(Y(s ; t), Y(s+h ; t+\tau))
$$

and correlation function:

$$
\rho(h ; \tau) \equiv C(h ; \tau) / C(0 ; 0)
$$

Heine (1955) Biometrika, gives a closed-form solution for $\rho(\cdot ; \cdot)$

Contour Plot of Spatio-Temporal Correlation Function

$\rho(h ; \tau)$ for the stochastic reaction-diffusion equation

Separability of Spatio-Temporal Covariance Functions

- Stochastic PDEs are built from dynamical physical considerations and they imply covariance functions
- Covariance functions have to be positive-definite (p-d). So, specifying classes of spatio-temporal covariance functions to describe the dependence in spatio-temporal data is not all that easy
- Suppose the spatial $C^{(1)}(\mathbf{h})$ is $\mathrm{p}-\mathrm{d}$ and the temporal $C^{(2)}(\tau)$ is p-d. Then the separable class:

$$
C(\mathbf{h} ; \tau) \equiv C^{(1)}(\mathbf{h}) \cdot C^{(2)}(\tau)
$$

is guaranteed to be p-d

- Separability is unusual in dynamical models; it says that temporal evolution proceeds independently at each spatial location

Stochastic Reaction-Diffusion and Separability

- If $C(h ; \tau)=C^{(1)}(h) \cdot C^{(2)}(\tau)$, then

$$
\begin{aligned}
& C(h ; 0)=C^{(1)}(h) C^{(2)}(0) \\
& C(0 ; \tau)=C^{(1)}(0) C^{(2)}(\tau)
\end{aligned}
$$

and hence

$$
\begin{aligned}
\rho(h ; \tau) & =\frac{C^{(1)}(h) \cdot C^{(2)}(\tau)}{C(0 ; 0)} \\
& =\frac{C(h ; 0) \cdot C(0 ; \tau)}{C(0 ; 0) \cdot C(0 ; 0)} \\
& =\rho(h ; 0) \cdot \rho(0 ; \tau)
\end{aligned}
$$

- Is this true for the stochastic reaction-diffusion equation? Plot

$$
\begin{array}{cl}
\rho(h ; 0) \cdot \rho(0 ; \tau) & \text { versus }(h, \tau) \\
\rho(h ; \tau) & \text { versus }(h, \tau)
\end{array}
$$

Contour Plots of Spatio-Temporal Correlation Functions

The difference in correlation functions is striking. Hence $\rho(\cdot ; \cdot)$ is not separable. Can we see the difference between separability and non-separability in their realizations?

Non-Separable Realizations in Space-Time

Three realizations of $Y(s ; t)$

Realizations are generated from a stationary Gaussian process with the non-separable, reaction-diffusion correlation function, $\rho(h ; \tau)$

Separable Realizations in Space-Time

Three realizations of $Y(s ; t)$

Realizations are generated from a stationary Gaussian process with separable correlation function, $\rho(h ; 0) \cdot \rho(0 ; \tau)$

Inference on a Hidden Spatio-Temporal Process

- We could ignore the dynamics and treat time as another "spatial" dimension. Write the data as:

$$
\mathbf{Z}=\left(Z\left(\mathbf{s}_{1} ; t_{1}\right), \ldots, Z\left(\mathbf{s}_{n} ; t_{n}\right)\right)^{\prime},
$$

which are observations taken at known space-time "locations". The data are noisy and not observed at all locations of interest

- Assume a hidden ("true") process $\left\{Y(\mathrm{~s} ; t): \mathrm{s} \in D \subset \mathbb{R}^{d} ; t \geq 0\right\}$, which is not observable due to measurement error and missingness. Write

$$
\mathbf{Z}=\mathbf{Y}+\varepsilon
$$

where $E(\varepsilon)=0, \operatorname{var}(\varepsilon)=\sigma_{\varepsilon}^{2} I$. We wish to predict $Y\left(\mathbf{s}_{0} ; t_{0}\right)$ from data \mathbf{Z}

Spatio-Temporal Kriging

Predict $Y\left(\mathbf{s}_{0} ; t_{0}\right)$ with the linear predictor $\boldsymbol{\lambda}^{\prime} \mathbf{Z}$:
For simplicity, assume $E(Y(\mathrm{~s} ; t)) \equiv 0$. Then minimize w.r.t. $\boldsymbol{\lambda}$, the mean squared prediction error,

$$
E\left(Y\left(\mathbf{s}_{0} ; t_{0}\right)-\boldsymbol{\lambda}^{\prime} \mathbf{Z}\right)^{2} .
$$

This results in the simple kriging predictor:

$$
\widehat{Y}\left(\mathbf{s}_{0} ; t_{0}\right)=\mathbf{c}\left(\mathbf{s}_{0} ; t_{0}\right)^{\prime} \Sigma_{Z}^{-1} \mathbf{Z},
$$

where $\Sigma_{Z} \equiv \operatorname{var}(\mathbf{Z})$ and $\mathbf{c}\left(\mathbf{s}_{0} ; t_{0}\right)=\operatorname{cov}\left(Y\left(\mathbf{s}_{0} ; t_{0}\right), \mathbf{Z}\right)$
The simple kriging standard error (s.e.) is:

$$
\sigma_{k}\left(\mathbf{s}_{0} ; t_{0}\right)=\left\{\operatorname{var}\left(Y\left(\mathbf{s}_{0} ; t_{0}\right)\right)-\mathbf{c}\left(\mathbf{s}_{0} ; t_{0}\right)^{\prime} \Sigma_{Z}^{-1} \mathbf{c}\left(\mathbf{s}_{0} ; t_{0}\right)\right\}^{1 / 2}
$$

Kriging for the Stochastic Reaction-Diffusion Equation

(a) Full realization; $\varepsilon=0$
(b) Crosses show $\left\{\left(\mathrm{s}_{i} ; t_{i}\right)\right\}$ superimposed on the kriging predictor $\operatorname{map},\left\{\widehat{Y}\left(\mathbf{s}_{0} ; t_{0}\right)\right\}$
(c) Kriging s.e. map, $\left\{\sigma_{k}\left(\mathbf{s}_{0} ; t_{0}\right)\right\}$

Kriging for the Stochastic Reaction-Diffusion Equation, ctd.

(a) Same full realization; $\varepsilon=0$
(b) Crosses show different $\left\{\left(\mathrm{s}_{i} ; t_{i}\right)\right\}$ superimposed on the kriging predictor map, $\left\{\widehat{Y}\left(\mathbf{s}_{0} ; t_{0}\right)\right\}$
(c) Kriging s.e. map, $\left\{\sigma_{k}\left(\mathbf{s}_{0} ; t_{0}\right)\right\}$

Emphasize the Dynamics

Approximate the differentials in the reaction-diffusion equation:

$$
\frac{\partial Y}{\partial t}=\beta \frac{\partial^{2} Y}{\partial s^{2}}-\alpha Y
$$

with differences:

$$
\frac{Y\left(s ; t+\Delta_{t}\right)-Y(s ; t)}{\Delta_{t}}=\beta\left\{\frac{Y\left(s+\Delta_{s} ; t\right)-2 Y(s ; t)+Y\left(s-\Delta_{s} ; t\right)}{\Delta_{s}^{2}}\right\}-\alpha Y(s ; t)
$$

Define $\mathbf{Y}_{t} \equiv\left(Y\left(\Delta_{s} ; t\right), \ldots, Y\left(79-\Delta_{s} ; t\right) ; \mathbf{Y}_{t}^{B} \equiv(Y(0 ; t), Y(79 ; t))^{\prime}\right.$. Then the stochastic version of the difference equation is:

$$
\mathbf{Y}_{t+\Delta_{t}}=M \mathbf{Y}_{t}+M_{B} \mathbf{Y}_{t}^{B}+\boldsymbol{\delta}_{t+\Delta_{t}}
$$

where $M_{B} \mathbf{Y}_{t}^{B}$ represents given boundary effects. The difference equation is a good approximation to the differential equation, provided $\alpha \Delta_{t}<1$ and $2 \beta \Delta_{t} / \Delta_{s}^{2}<1$

Emphasize the Dynamics, ctd.

Importantly,

$$
M=\left[\begin{array}{ccccc}
\theta_{1} & \theta_{2} & 0 & \ldots & 0 \\
\theta_{2} & \theta_{1} & \theta_{2} & \ldots & \vdots \\
0 & \theta_{2} & \theta_{1} & \ddots & \vdots \\
\vdots & & \ddots & \ddots & \theta_{2} \\
0 & 0 & \ldots & \theta_{2} & \theta_{1}
\end{array}\right]
$$

where $\theta_{1}=\left(1-\alpha \Delta_{t}-2 \beta \Delta_{t} / \Delta_{s}^{2}\right), \theta_{2}=\beta \Delta_{t} / \Delta_{s}^{2}$. This can be viewed as the propagator matrix of a $\operatorname{VAR}(1)$ process. The matrix is defined by the dynamics. In other words, in a model of spatio-temporal dependence, M has structure (and is sparse). Conditional on the boundary effects, we see that the lagged covariances are given by,

$$
C_{Y}^{(m)}=M^{m} C_{Y}^{(0)},
$$

where $C_{Y}^{(m)} \equiv \operatorname{cov}\left(\mathbf{Y}_{t}, \mathbf{Y}_{t+m \Delta_{t}}\right) ; m=0,1,2, \ldots$

Comparison of Differential and Difference Equations

Spatio-temporal correlations; $\alpha=1, \beta=20, \Delta_{s}=1$, and $\Delta_{t}=0.01$
Solid blue line: from differential equations
Red dots: from difference equations

The Dynamics in the Difference Equation

Think of a spatial process at time t rather than a spatio-temporal process. Call it the vector \mathbf{Y}_{t}. Then describe the dynamics by a $\operatorname{VAR}(1)$:

$$
\mathbf{Y}_{t}=M \mathbf{Y}_{t-1}+\boldsymbol{\delta}_{t}
$$

The choice of M is crucial. Define $M \equiv\left(m_{i j}\right)$ "spatially", that is, where the $m_{i j}$ corresponding to nearby locations \mathbf{s}_{i} and \mathbf{s}_{j} are non-zero, and are zero when locations are far apart

This applies the "First Law of Geography" (Tobler; cf. Fisher and wheat yields) to the dynamical evolution of the process

General M

M defined "spatially"

Instantaneous Spatial Dependence (ISD)

To capture the process' behavior at small temporal scales between time t and time $t+1$, we need a component of variation that is modeled as instantaneous spatial dependence (ISD):

$$
\mathbf{Y}_{t}=B_{0} \mathbf{Y}_{t}+B_{1} \mathbf{Y}_{t-1}+\boldsymbol{\nu}_{t}
$$

where B_{0} has zero down its diagonal. Model B_{0} and B_{1} "spatially"; see the figure below. This implies

$$
\mathbf{Y}_{t}=M \mathbf{Y}_{t-1}+\boldsymbol{\delta}_{t}
$$

where $M=\left(I-B_{0}\right)^{-1} B_{1}$ and $\boldsymbol{\delta}_{t}=\left(I-B_{0}\right)^{-1} \boldsymbol{\nu}_{t}$. What use are B_{0} and B_{1} ? They have dynamic structure and are sparse!

ISD in Graphical Form

(a)

(a) Graph structure (sparse) showing relationships that are defined "spatially"
(b)

(b) Equivalent directed graph
structure (non-sparse)

Nonstationarity

Stationarity can be an unrealistic assumption. Descriptive approaches to spatio-temporal modeling, expressed in terms of covariance functions, almost demand it.

Dynamical approaches are much more forgiving. Consider the nonstationary VAR(1) process:

$$
\mathbf{Y}_{t}=M_{t} \mathbf{Y}_{t-1}+\boldsymbol{\delta}_{t}
$$

For example,

$$
M_{t}=f(t) \cdot M
$$

where

$$
f(t)=\left\{\begin{array}{rl}
1 & 0 \leq t \leq 29 \\
-1 & 30 \leq t \leq 59 \\
1 & 60 \leq t \leq 79
\end{array}\right.
$$

and M is tridiagonal but has different parameters for $0 \leq s \leq 19$ and for $20 \leq s \leq 39$

Realizations for Nonstationary Process

Three realizations of $Y(s ; t)$
(a)

Space

(b)

$$
\mathbf{Y}_{t}=M_{t} \mathbf{Y}_{t-1}+\boldsymbol{\delta}_{t}
$$

... the NEXT frontier
(with apologies to Gene Roddenberry and Trekkies)

