Single-image molecular analysis for accelerated fluorescence imaging

Yan Mei Wang

Department of Physics Washington University in St. Louis

Outline

- 1. Current single-molecule localization, separation, and dynamic measurement methods and challenges
- 2. Use single-image molecular analysis (SIMA) to determine
 - a. Axial-localization precision
 - b. Separations of unresolved molecules
 - c. Diffusion coefficients of proteins in free solution
- 3. Applications
 - a. Intraflagellar transport particle dynamics BBSome and IFT
 - b. Membrane-binding proteins -UgtP
 - c. Photosynthesis Phycobilisome

I. 3D Localization

Gaussian-approximated point spread function (PSF):

Centroid → Lateral location, x and y

Standard deviation (SD) → Axial location, z

GFP, TIRF image

Axial location measurement, z

PSF Standard deviation, $s_{x,y}$, determines the axial location, z

Phycobilisome protein axial location (relative to the focal plane)

$$s(z) = s_0 \sqrt{1 + \left(\frac{z}{d}\right)^2 + b\left(\frac{z}{d}\right)^4}$$
 $s_0 = \text{SD at focus,}$ $d = \text{`imaging depth''}$ $b = \text{fitting parameter}$

Localization precision

Precision in x-direction:

$$\sqrt{\langle (\Delta x)^2 \rangle} = \sqrt{\frac{2(s_{0x}^2 + \frac{a^2}{12})}{N} + \frac{8\pi(s_{0x}^2 + \frac{a^2}{12})^{3/2}(s_{0y}^2 + \frac{a^2}{12})^{1/2}(\sigma_b^2 + \langle b \rangle)}{a^2 N^2}}$$

a - pixel size

 $S_{0x/y}$ - standard deviation (SD) in x/y direction

N - number of photons

 σ_b - background noise standard deviation

(b) - background noise mean

$$\sqrt{\langle (\Delta x)^2 \rangle} \approx 7 \text{ nm for 1000 photons}$$

Problem, there is no axial precision expression, ∆z

Repeated measurements are used to obtain Δz (seconds of imaging)

II: Separation measurements

Airy Disk Separation and the Rayleigh Criterion

Rayleigh criterion separation = 0.61 *λ/NA* ≈ 240 nm

 λ = wavelength = 550 nm NA = numerical aperture = 1.49

Synechocystis (3 µm cyanobacteria)

Disadvantages of current methods

- 1. Photobleaching of the molecule, SHRImP
- 2. Multiple color, SHREC
- 3. Photoswitchable fluorophores
- 4. Centroid measurements, long measurement time: > seconds

III. Dynamics studies, single-molecule tracking Simulation of individual Brownian trajectories

$$\langle x(\Delta n)^2 \rangle = 2D_1 \Delta n$$

$$x(10)=(x_{11}-x_1), (x_{12}-x_2), ... (x_N-x_{N-10})$$

$$\langle x(\Delta n)^2 \rangle = 2D_1 \Delta n \, \pm \, \sigma(\Delta n \, , N)$$

$$\sigma(\Delta n, N) = 2D_1 \Delta n [(2\Delta n^2 + 1)/(3\Delta n(N - \Delta n + 1))]^{1/2}$$

 $\Delta n = 1, 2, 3, ... N$

Limitation of current single-molecule D_3 measurements

- Depth of imaging < 300 nm
- A 5 nm wide GFP, $D_3 \approx 10^8$ nm²/s, moves out of the imaging depth in 1 ms
 - $(x^2)^{1/2} = 300 \text{ nm} = (2D_3t)^{1/2} \Rightarrow t = 1 \text{ ms}$
 - With 100 Hz camera imaging rate, $D_{3,max} \approx 10^5 \text{ nm}^2/\text{s}$

Recent $D_{3,max} \approx 2 \times 10^7$ nm²/s measurements require two-color labeling (Stefan Semrau et al., BPJ, 2011)

Biological systems need fast single-molecule investigations

Example: Intraflagellar transport - IFT

Kinesin-GFP, 2 μm/s

- IFT particles travel to the flagellar tip and back
- Carry flagellar materials
- Carry signaling proteins

Direct relevance to human disease: such as, Bardet-Biedl syndrome & Polycystic Kidney Disease

Solution: analyze the spatial distribution of photons

Blurred moving car

- (A) A stationary molecule
- (B) Two fluorophores separated by 237 nm
- (C) A diffusing GFP in solution (1 ms exposure time)
- (D) The SD difference.

Compromising the spatial resolution?

Temporal resolution = submillisecond-milliseconds = single-image exposure time

Spatial resolution = nanometers

Theoretical SD measurement error

$$\langle \Delta s_x \rangle = \sqrt{\frac{s_{0x}^2 + \frac{a^2}{12}}{2N} + \frac{16\pi(s_{0x}^2 + \frac{a^2}{12})^{3/2}(s_{0y}^2 + \frac{a^2}{12})^{1/2}(\sigma_b^2 + \langle b \rangle)^2}{3N^2a^2}}$$

 $\Delta s_x = SD$ measurement error $s_0 = theoretical\ PSF\ SD \approx 120\ nm$ for Cy3 $a = pixel\ size \approx 79\ nm$ $N = number\ of\ photons\ in\ the\ PSF$ $\sigma_b = SD\ of\ background\ photon\ count$ $\langle b \rangle = mean\ background\ photon\ count$

SD measurement error

I. ∠z, axial localization precision

Error propagation:

$$s(z) = s_0 \sqrt{1 + \left(\frac{z}{d}\right)^2 + b\left(\frac{z}{d}\right)^4} \Rightarrow \Delta z(s) \propto \Delta s$$

Δz is a function of SD, s

$$\Delta z = \frac{sd\Delta s}{\sqrt{2}s_0^2 \sqrt{\left(\frac{s}{s_0}\right)^2 - 1 + \frac{1}{4b} \left(2\sqrt{b}\sqrt{\left(\frac{s}{s_0}\right)^2 - 1 + \frac{1}{4b}} - 1\right)^{1/2}}}$$

$$= \frac{sd\sqrt{\frac{s_0^2 + \frac{a^2}{12}}{N} + \frac{16\pi(s_{0x}^2 + \frac{a^2}{12})^{3/2}(s_{0y}^2 + \frac{a^2}{12})^{1/2}(b^2 + \langle bg \rangle)}{3a^2N^2}}$$

$$= \frac{\sqrt{2}s_0^2 \sqrt{\left(\frac{s}{s_0}\right)^2 - 1 + \frac{1}{4b} \left(2\sqrt{b}\sqrt{\left(\frac{s}{s_0}\right)^2 - 1 + \frac{1}{4b}} - 1\right)^{1/2}}}$$

Experiments agree with the \(\Delta z \) expression

This study allows single PSF 3D-localization measurements with precision

 Δs (vertical) and Δz (horizontal)

at 1000 photons/image; Az = 34 nm at z = 400 nm

Application I: membrane glycolipid synthesis enzyme, UgtP-YFP, membrane interaction statics and dynamics

UgtP-YFP puncta in Bacilica *subtillis*

3D location and precision

UgtP-YFP moves along a helical path

UgtP-YFP diffusing along the membrane?

Helical path

 $1 \mu m$

II. Unresolved identical fluorophores; dimer separation measurements

SD measurements of dimer separations

SD vs. separation

Error to separation measurements

Top down, 150 to 20,000 photons

Milliseconds temporal resolution

Application II: Photosynthesis

Cyanobacteria collect light for energy by photosynthesis; future substance for clean energy

Synechocystis (3 μm cells)

Phycobilisomes (60 nm across), protein on the cell thylakoid membrane that collects light energy

Phycobilisome light energy transfer mechanism

FRET through components to the terminal emitters in the core

PC and APC emission peak at 650 nm and 660 nm, cannot differentiate using conventional spectroscopy

Energy transfer efficiency < 95%

The SD of phycobilisomes is 6 nm larger than the expected value for 95% energy transfer efficiency

III. 3D diffusing GFP in free solution 1 ms exposure time

Only one image of a diffusing molecule can be obtained

Simulation

Theory: SD vs. exposure time t expression

$$I(x,y) = PSF(z\text{-weighted}) \otimes PWDF_{x,y}$$

PWDF = pathway distribution function

$$\int_{0}^{\infty} \frac{1}{s_{x,z} s_{y,z}} \exp \left(-\left[\frac{x^{2}}{2s_{x,z}^{2}} + \frac{y^{2}}{2s_{y,z}^{2}} \right] \right) \exp \left(-\left[\frac{(z - \overline{z})^{2}}{2A_{z} D_{3} t} + \frac{z}{z_{d}} \right] \right) dz \otimes \exp \left(-\left[\frac{x^{2} + y^{2}}{2A_{x,y} D_{3} t} \right] \right)$$

Both PSF(z-weighted) and $PWDF_{x,y}$ are Gaussian functions

SD vs. exposure time expression

$$I(x,y) = PSF(z\text{-weighted}) \otimes PWDF_{x,y}$$

Since both PSF(z-weighted) and $PWDF_{x,y}$ are Gaussian functions, SD of the diffusing GFP image = (PSF variance + PWDF_{xy} variance)^{1/2}

$$S_{x,y}(t) = \sqrt{S_{x0,y0}^{2}(t) + 2A_{x,y}D_{3}t}$$

$$\Rightarrow D_{3} = \frac{S_{x,y}^{2}(t) - S_{x0,y0}^{2}(t)}{2A_{x,y}t}$$

Single image D_3 error

$$\Delta D_3 = \frac{8s_{x,y}(t)}{t} \Delta s_{x,y}$$

Experimental: SD measurements

$$t = 0.3 \text{ ms} \implies SD = 137 \pm 28 \text{ nm}$$

$$t = 0.7 \text{ ms} \implies SD = 159 \pm 32 \text{ nm}$$

$$t = 1.0 \text{ ms}$$
 \Rightarrow SD = 172 ± 35 nm

SD vs. exposure time

For 1 GFP image at 1 ms, $D_3 = 9 \times 10^7 \pm 5.2 \times 10^7 \text{ nm}^2/\text{s}$

For 10 images, $D_3 = 9 \times 10^7 \pm 1.7 \times 10^7 \text{ nm}^2/\text{s}$

Application III: BBSome and IFT turnaround mechanism at the flagellar tip

If IFT dissociates at the tip, SD will increase by 5 nm for 1 ms exposure.

• We observe no increase.

Summary

- •SIMA, single-image molecular analysis, can speed up single-molecule fluorescence studies to millisecond timescales.
- •SMID, single-molecule image deconvolution analysis, provides localization, separation, and dynamic information of single molecules with nanometer precisions.
- Already show promise in biological systems

Lab members

Michael DeSantis

Jonathan Kessler

Anthony Kovacs

Collaborators

IFT dynamics: Susan Dutcher, Department of Genetics, WU medical school

Photosynthesis: Bob Blankenship, Department of Biology, WU

UgtP dynamics: Petra Levin, Department of Biology, WU

Imaging setup

Microscope imaging system

488 nm laser and prism TIRF

Camera Microscope

PWDF_{xv} can be approximated by a Gaussian

Single trajectory position distributions at 0.6 ms, PWDF_{xv}

PWDF_{xy} convolved with photon emission

Convolved PWDF_{xy} SD distribution; the mean yields $A_{x,y} = 0.095$

$$PWDF_{x,y} = \frac{1}{2\pi A_{x,y} D_3 t} \exp\left(-\frac{x^2 + y^2}{2A_{x,y} D_3 t}\right)$$

Immobile vs. diffusing GFP

Questions:

- 1. Dynamics of BBSome in flagella to carry signaling proteins
- 2. BBSome, IFT, and Kinesin turnaround mechanisms at the flagellar tip

