Dale A Schoeller Nutritional Sciences University of Wisconsin-Madison

ENERGY DENSITY OF FAT AND FAT-FREE MASS

Energy substrates

 Biochemicals that can be oxidized to produce higher energy phosphate bonds

- Carbohydrates
- Lipids
- Proteins
- Minor amounts of other biochemicals

Energy density of macronutrients

4-9-4 energy rule

Pro 4 kcal/g

FAT 9 kcal/g

CHOH 4 kcal/g

Atwater factors

Dietary Energy Units

- Gross energy
 Energy released when combusted to CO2, H2O and N2
- Digestible energy
 Energy absorbed
 Gross energy fecal energy losses
- Metabolizable energy
 Energy available to the body
 Digestible energy urinary energy losses
 Gross energy (fecal + urinary losses)

Atwater factors (dietary)

Gross energy kcal/g

Protein5.65

• Fat 9.40

Carbohydrate 4.10

Digestible energy

Protein 5.2

Pat 9.0

Carbohydrate 4.0

Metabolizable energy

Protein 4

Fat

Carbohydrate 4

Body composition

- Fat mass
 - Triglyceride
- Fat-free mass
 - Water
 - Protein
 - Mineral
 - Glycogen

Energy composition

- Fat mass
 - TRIGLYCERIDE
- Fat-free mass
 - Water
 - PROTEIN
 - Mineral
 - GLYCOGEN

Energy density of FAT MASS

Animal fat

gross energy 9.45 kcal/g

no fecal or urinary loss

energy density

9.45 kcal/g

Energy density of FAT MASS

Exception

Loss of ketone bodies

β-hydroxybutric acid
 4.96 kcal/g

Acetoacetic acid

Acetone

4.15 kcal/g

7.37 kcal/g

Starvation (limited data)

Losses 10-20 g/d

 $(3-5\% \text{ of } E_{lipid})$

+100 g dietary CHOH

<1 g/d

Energy density FAT-FREE MASS

- Glycogen
 - = Starch
 - Gross energy 4.12 kcal/g

- No urinary loss
- Protein
 - Gross energy
 - Urinary loss
 - Metabolizable

5.65 kcal/g

controversy

Urinary loss associated with protein oxidation

- Traditional Atwater approach
 - Assume all urinary energy loss from incomplete protein oxidation.
 - Atwater urine analyses
 - 7.9 kcal/g urinary N
 - 1.25 kcal/g protein
- 1 meat diet experiment
 - 7.7 kcal/g urinary N
 - 1.23 kcal/g
- De novo calculation
 - Urinary N urea, ammonia, creatinine 90:5:5
 - 5.8 kcal/g urinary N
 - o.93 kcal/g

Energy density FAT-FREE MASS

- Glycogen
 - = Starch
 - Gross energy 4.12 kcal/g

- No urinary loss
- Protein
 - Gross energy
 - Urinary loss
 - Metabolizable

- 5.65 kcal/g
- 0.93 to 1.23 kcal/g
- 4.72 to 4.42

Energy density FAT-FREE MASS

Exceptions

- Uncontrolled diabetes
 - Glycosuria
 - Up to 150 g/d
- Starvation
 - N excreted mostly as ammonia
 - Less urinary energy loss from protein oxidation
 - Linked to ketone loss preserve acid/base balance
 - ≈ compensates for energy lost as ketones

Composition of FAT-FREE MASS

Water 73%

Protein 21%

Osseous mineral 5%

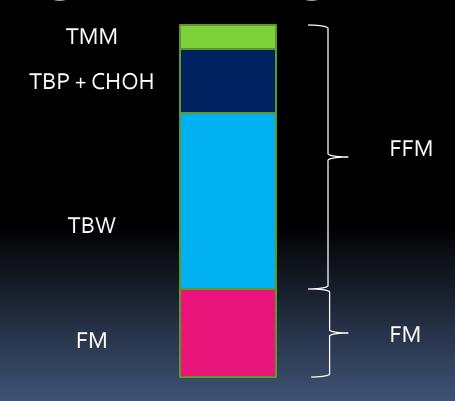
Non-osseous mineral 0.7%

Glycogen o.7%

Multiple sources because there is not a constant value

Energy density of FAT-FREE MASS

Protein 0.21 * (4.65-1.2)


Glycogen 0.007*4.12

FFM: 0.96 kcal/g

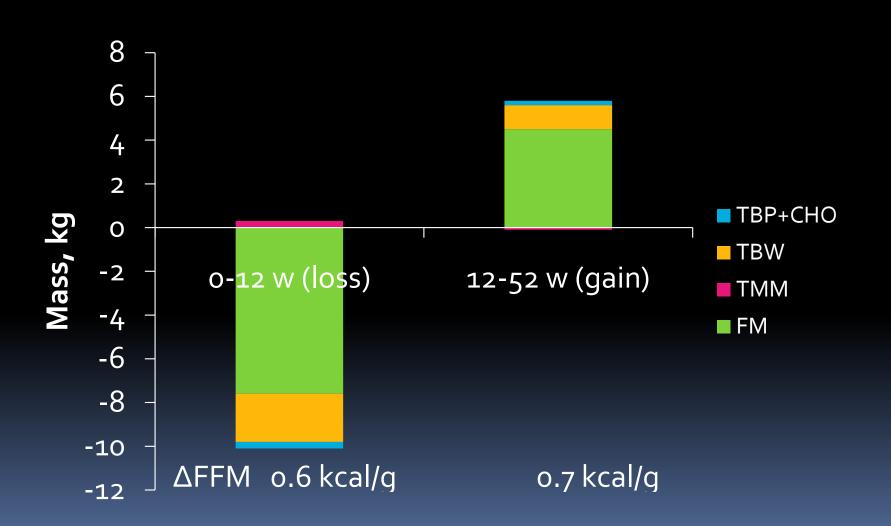
Adjust for no bone loss

FFM: 1.0 kcal/g

But do these proportions hold true for the composition of change in weight?

Human Experimental Data

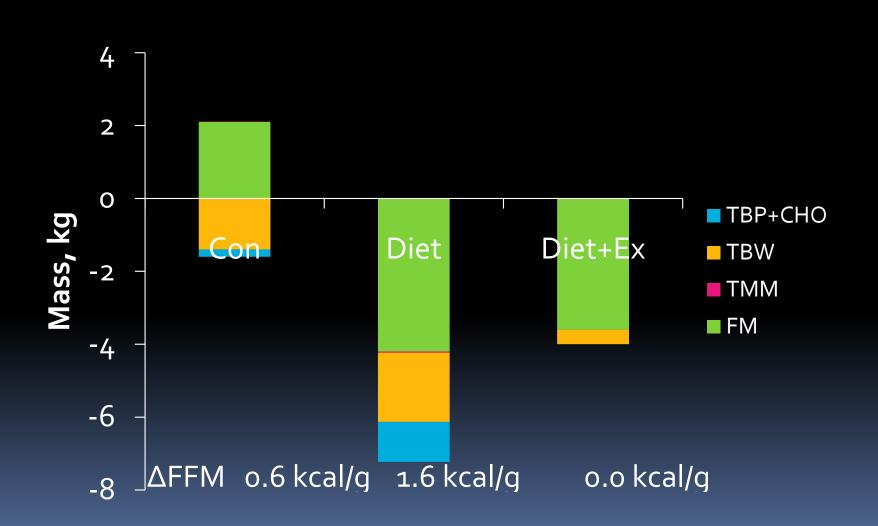
Weight loss


4C body composition analysis
TBW – D dilution/1.04
TMM – DXA ash*1.27
Body density by water or air displacement

Minimal assumptions
Total body water
Total mineral mass
Protein (+ CHOH) mass
Fat mass

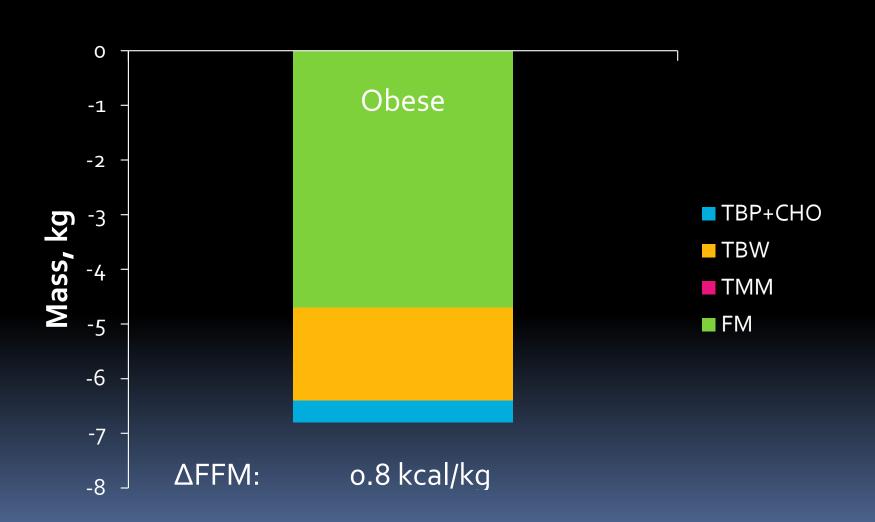
Jebb et al Intl J Obesity 31, 756, 2006

- 48 adult women
 - 24-65 y
 - BMI > 25 kg/m²
 - 12 w wt loss + 40 follow-up


Jebb et al Intl J Obesity 31, 756, 2006

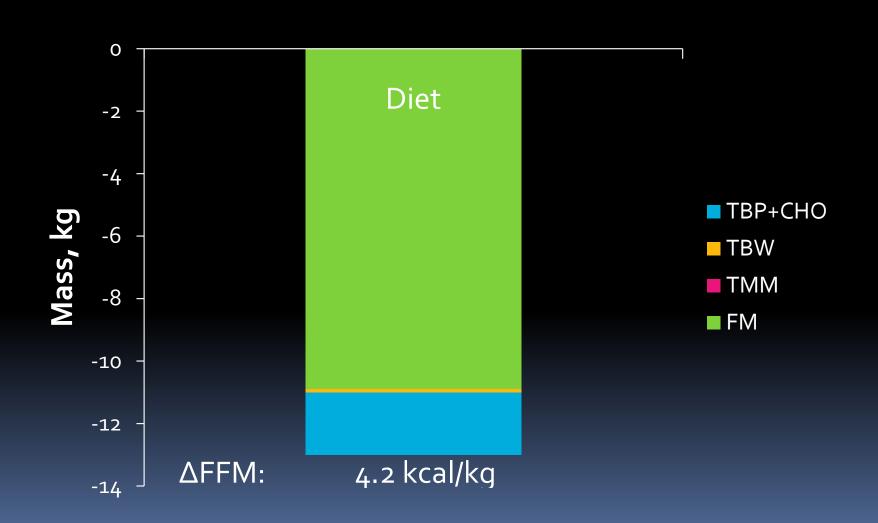
Evans et al. Am J Clin Nutr 70:5, 1999

- Women n= 9 in each of three groups
- 21-40 y
- 58-132 kg
- 27-44 kg/m²
- Tx 10wk
 - Control
 - -1000 kcal/d balanced diet
 - Diet + 350 kcal/d moderate Ex


Evans et al. Am J Clin Nutr 70:5, 1999

Mahon et al. J Nutr Hlth Aging 11:203, 2007

- Women, n=27 postmenopausal
- 59 <u>+</u> 8 y
- 77 <u>+</u> 10 kg
- 29 + 3 kg/m²
- Tx
 - 9 wk
 - 1200 kcal/d balanced diet


Mahon et al. J Nutr Hlth Aging 11:203, 2007

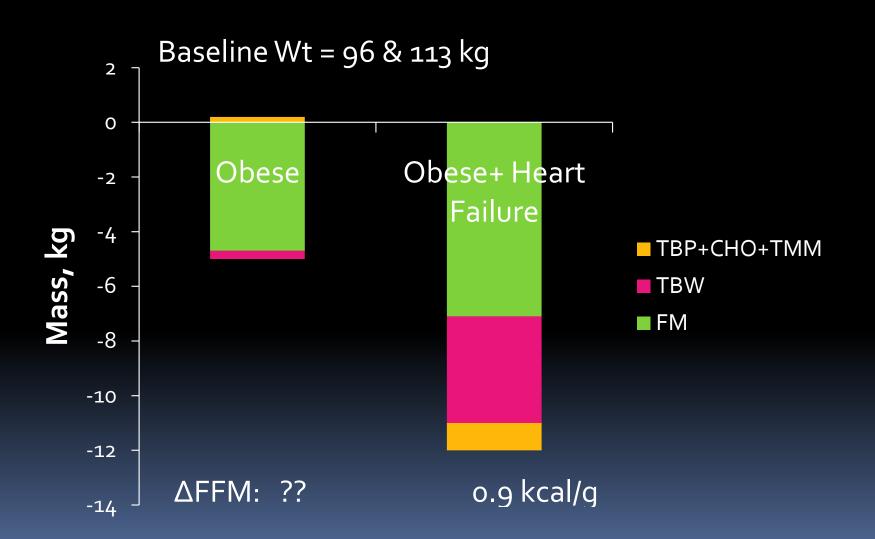
Fogelholm et al. Metabolism. 46:968, 1997

- Women, n-32
- 30-45 y
- 94 <u>+</u> 11 kg
- 35 <u>+</u> 4 kg/m²
- Tx
 - 12 wk
 - 600 kcal/d (1100 kcal/d final body comp)

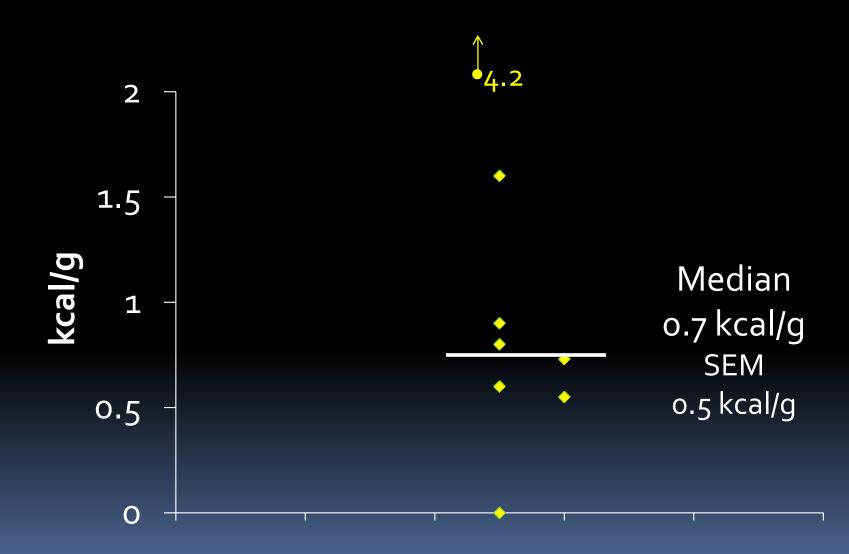
Fogelholm et al. Metabolism. 46:968, 1997

Myint et al, Obesity, 18:391, 2010

Otherwise healthy

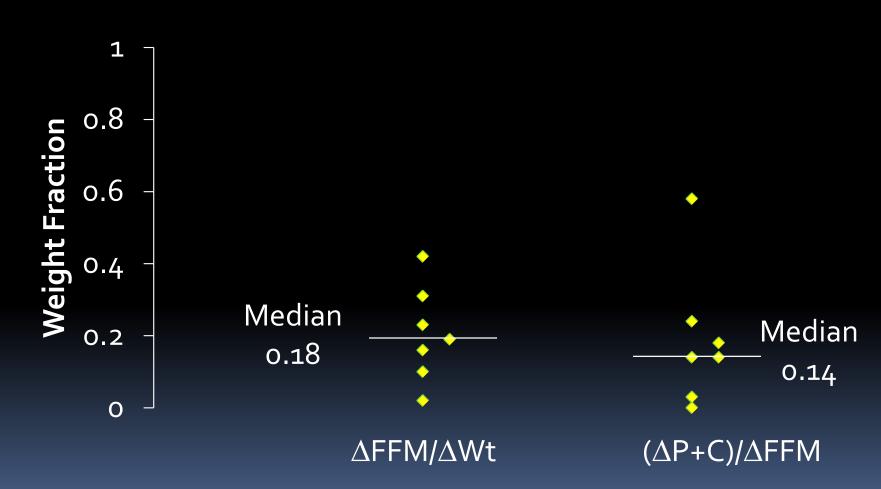

- M:F 4:7
- **4**2 <u>+</u>14 y
- 31 ± 1 kg/m²

- Tx
 - 8 wks
 - 600 kcal/d deficit


- Heart failure (excess TBW)
- M:F 3:8
- 54 <u>+</u>10 y
- 38 <u>+</u> 5 kg/m²

- Tx
 - 6 wks
 - 600 kcal/d deficit

Myint et al, Obesity, 18:391, 2010



Energy Density AFAT-FREE MASS

Other relationships

Why so variable?

Problem of propagation of error and small changes

M/Db = Mtbw/Dtbw + Mtmm/Dtmm +Mpro/Dpro + Mfm/Dfm

Why so variable?

Problem of propagation of error and small changes

M/Db = Mtbw/Dtbw + Mtmm/Dtmm + Mpro/Dpro + Mfm/Dfm

And Mpro = M - Mtbw - Mtmm - Mfm

Why so variable?

Problem of propagation of error and small changes

- ΔTBW sd = 0.4kg
- Pro + CHOH
 - Δ 0.4kg/10 kg wt loss,
 - sd = 0.4+kg
 - If n = 100, then SEM = 0.04kg

4C approach cannot detect differences in energy density of Δ FFM without a large n, but the median is meaningful.

Conclusions

- Energy density of FM
 - 9.45 kcal/kg
 - High level of confidence
- Energy density of FFM
 - 1.0 kcal/g
 - High level of confidence in theory
 - Modest level of confidence in practice