Energy expenditure in response to energy intake and physical activity

Klaas R Westerterp

Maastricht University The Netherlands

Background

Energy balance can be maintained by adapting intake to expenditure and vice versa

Key variables are food intake and physical activity

Objectives

Does a change in intake affect activity?

Does a change in activity affect intake?

Model

Total = basal + diet + activity expenditure TEE = BEE + DEE + AEE

DEE = 0.1 El (energy intake)

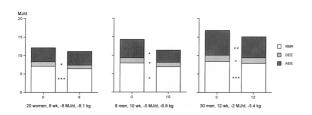
1 kg weight change = 75% FM + 25% FFM

Overeating and physical activity

Reference	Subjects	Overfeeding	PAL _{baseline} 1)	PALoverfeeding
Roberts et al (1990)	7 males, normal weight	3 weeks + 4.2 MJ	1.85±0.01	1.89±0.04 ^{ns}
Diaz et al (1992)	9 males, normal/overweight	6 weeks, 150% baseline	1.8±0.2	1.8±0.3 ^{ns}
Pasquet (1992)	9 males, normal weight	9 weeks, 200% baseline	1.87±0.12	1.45±0.09*
Levine et al (1999)	4 females, 12 males, normal weight	8 weeks + 4.2 MJ/d	1.67±0.21 ²⁾	1.90±0.28*
Joosen et al (2005)	7 females, normal weight	2 weeks, 150% baseline	1.78±0.19	1.77±0.21 ^{ns}
Siervo et al (2008)	6 males, normal weight	9 weeks, 120-160% baseline	1.60	1.65 ^{ns}

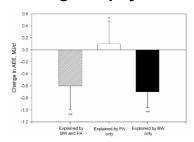
No effect when overfeeding is lower than twice maintenance requirement

Westerterp. Nutr Rev 2010;68:148-54


Discussion

Overeating increases total energy expenditure with ~10 % due to:

- Increased diet induced energy expenditure
- Storage cost of excess nutrients


Significantly different from baseline (p<0.001).
 Personal activity level, doubly labeled water assessed energy expenditure as a multiple of resting energy expenditure.
 Energy intake as a multiple of resting energy expenditure.

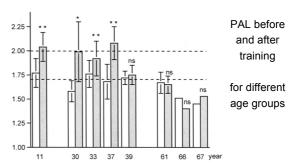
Undereating and physical activity

Kempen et al. Am J Clin Nutr 1995;62:722-9 Velthuis-te Wierik et al. Int J Obes 1995;19:318-22 Westerterp-Plantenga et al. Am J Clin Nutr 2001;74:426-34

Undereating and physical activity

66 women and men, 12 wk, -8 MJ/d, -13.9 kg

Subjects can hardly offset the weight loss induced decrease in AEE


Bonomi et al . submitted

Discussion

Undereating decreases total energy expenditure with ~20 % due to:

- Decreased basal energy expenditure
- · Decreased diet induced energy expenditure
- A reduction of activity energy expenditure

Exercise training and activity level

Westerterp & Plasqui Curr Opin Clin Nutr Metab Care 2004;7:607-13

Exercise training and body weight

Reference	Subjects	Training mode	$\Delta \; \textbf{Expenditure}$	Δ Body
			(MJ/d)	weight (kg)
Bingham et al (1989)	2 females, 3 males, normal weight	jogging for 9 weeks	+ 2.8*	- 0.9 ^{ns}
Blaak et al (1992)	10 boys, obese	cycling for 4 weeks	+ 1.3*	+ 0.5 ^{ns}
Westerterp et al (1992)	5 females, 8 males, normal weight	jogging for 40 weeks	+ 2.3***	-0.9 ^{ns}
Van Etten et al (1997)	12 males, normal weight	weight training for 12 weeks	+ 0.8**	- 1.1*

* P<0.05; **P<0.01; ***P<0.001, for significant differences with baseline; **s, not statistically significant

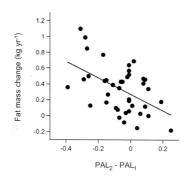
Exercise induces increased energy intake

Westerterp. Nutr Rev 2010;68:148-54

Discussion

Exercise training increases energy expenditure, especially in younger subjects with ad libitum intake

Exercise training hardly affects body weight, through a compensatory increase of intake


Reduced physical activity

	Baseline	Follow-up
Age (y)	27±5	39±8***
Body mass index (kg/m²)	22.8 ± 2.0	24.3 ± 2.6**
Resting energy expenditure (REE, MJ/d)	6.76±0.98	6.84±1.00
Toal energy expenditure (TEE, MJ/d)	12.19±1.82	11.95 ± 1.77
Activity energy expenditure (0.9TEE-REE, MJ/d) ¹⁾	4.21 ± 1.05	3.92±1.19*
Physical activity level (TEE/REE)	1.81 ± 0.16	1.75±0.11**

 $^{^{1)}}$ Calculation based on a fixed 10% of TEE for diet induced energy expenditure. * P<0.05; ** P<0.01; *** P<0.001 for difference with baseline (n=40).

Westerterp and Plasqui PLoS ONE 2009;4:e4745

Reduced physical activity

Westerterp and Plasqui PLoS ONE 2009;4:e4745

Discussion

A change to a more sedentary routine does not induce an equivalent reduction of energy intake

Physically active subjects have an increased risk of fattening

Conclusions

- Overeating does not affect physical activity
- Undereating decreases habitual physical activity
- •Exercise induced energy expenditure is compensated by increased intake
- •A more sedentary lifestyle does not induce an equivalent reduction of intake

Discussion

The asymmetric activity response has important consequences for the regulation of energy balance

There is similar evidence for resting metabolic rate

Resting metabolic rate

Overeating and undereating induce changes in diet induced energy expenditure, being on average 10% of intake

Additionally, basal metabolic rate is affected by undereating

Measured versus predicted SMR

SMR reduction is sustained as long as weight loss is maintained

Van Gemert et al. Int J Obes 1998;22:343-8

Discussion

Eating less induces a reduction of REE

Eating more does not induce an increase in REE

The asymmetric response has consequences for the regulation of energy balance

Simulation

From energy equilibrium in reference man:

Increasing intake 750 kJ/d induces a weight increase of 1 kg in 40 days

Decreasing intake 750 kJ/d induces a weight decrease of 1 kg in 55 days

Discussion

It takes 40 days to gain 1 kg and more than 55 days to lose that kg again with a 750 kJ/d intake manipulation as eating less reduces REE and AEE

Conclusions

It is easier to gain than to lose weight

Preventing weight gain by eating less is most effective